Skip to main content
Log in

Effect of La Doping on the Electronic Structure of BiS\(_{2}\)-Based Superconductor Sr\(_{1-x}\)La\(_{x}\)FBiS\(_{2}\)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

By means of first-principles calculations, we have systematically studied the La doping effect for the recently discovered layered BiS\(_{2}\)-based superconductor Sr\(_{1-x}\)La\(_{x}\)FBiS\(_{2}\) (\(x = 0\)–0.7). For the electronic structure, we obtained the band structure, density of states (DOS), and Fermi surface (FS) at different doping levels. The parent compound SrFBiS\(_{2}\) is a semiconductor with a gap of 0.88 eV. The substitution of Sr by La dopes electrons and turns the system from a semiconductor to a metal. The band structure and the FS topology also change obviously with the increasing of doping level. Good FS nesting at the wave vector (\(\pi \), \(\pi \), 0 ) has been found at certain doping levels, suggesting a proximity to charge-density-wave instability. Particularly, the doping dependence of DOS at the Fermi level resembles the available experimental variation of \(T_{\mathrm{c}}\) as the function of x, indicating that it may be a conventional phonon-mediated superconductor. This was further proved by electron–phonon coupling calculation. Therefore, similar to LaO\(_{1-x}\)F\(_{x}\)BiS\(_{2}\), our results suggest another example of superconductor derived from doped semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, O. Miura, Phys. Rev. B 86, 220510 (2012)

    Article  ADS  Google Scholar 

  2. S.K. Singh, A. Kumar, B. Gahtori, G. Sharma, S. Patnaik, V.P.S. Awana, J. Am. Chem. Soc. 134, 16504 (2012)

    Article  Google Scholar 

  3. R. Jha, A. Kumar, S.K. Singh, V.P.S. Awana, J. Supercond. Nov. Magn. 26, 499 (2013)

    Article  Google Scholar 

  4. S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S.J. Denholme, M. Fujioka, T. Ozaki, H. Fujihisa, J. Phys. Soc. Jpn. 82, 033708 (2013)

    Article  ADS  Google Scholar 

  5. Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012)

    Article  ADS  Google Scholar 

  6. S. Li, H. Yang, J. Tao, X. Ding, H.H. Wen, Phys. Rev. B 86, 214518 (2012)

    Article  ADS  Google Scholar 

  7. D. Yazici, K. Huang, B.D. White, A.H. Chang, A.J. Friedman, M.B. Maple, Philos. Mag. 93, 673 (2012)

    Article  ADS  Google Scholar 

  8. D. Yazici, K. Huang, B.D. White, I. Jeon, V.W. Burnett, A.J. Friedman, I.K. Lum, M. Nallaiyan, S. Spagna, M.B. Maple, Phys. Rev. B 87, 174512 (2013)

    Article  ADS  Google Scholar 

  9. G.K. Selvan, M. Kanagaraj, S.E. Muthu, R. Jha, V.P.S. Awana, S. Arumugam, Phys. Status Solidi (RRL) 7, 510 (2013)

    Article  ADS  Google Scholar 

  10. J. Lee, M.B. Stone, A. Huq, T. Yildirim, G. Ehlers, Y. Mizuguchi, O. Miura, Y. Takano, K. Deguchi, S. Demura, S.-H. Lee, Phys. Rev. B 87, 205134 (2013)

    Article  ADS  Google Scholar 

  11. J. Liu, D. Fang, Z. Wang, J. Xing, Z. Du, X. Zhu, H. Yang, H.-H. Wen, Europhys. Lett. 106, 67002 (2013)

    Article  ADS  Google Scholar 

  12. S. Li, H. Yang, D. Fang, Z. Wang, J. Tao, X. Ding, H.-H. Wen, Sci China: Phys. Mech. Astron. 56, 2019 (2013)

    ADS  Google Scholar 

  13. M. Nagao, S. Demura, K. Deguchi, A. Miura, S. Watauchi, T. Takei, Y. Takano, N. Kumada, I. Tanaka, J. Phys. Soc. Jpn. 82, 113701 (2013)

    Article  ADS  Google Scholar 

  14. Shruti, P. Srivastava, S. Patnaik, J. Phys.: Condens. Matter 25, 312202 (2013)

  15. G. Lamura, T. Shiroka, P. Bonf, S. Sanna, R. DeRenzi, C. Baines, H. Luetkens, J. Kajitani, Y. Mizuguchi, O. Miura, K. Deguchi, S. Demura, Y. Takano, M. Putti, Phys. Rev. B 88, 180509 (2013)

    Article  ADS  Google Scholar 

  16. S.G. Tan, P. Tong, Y. Liu, W.J. Lu, L.J. Li, B.C. Zhao, Y.P. Sun, Eur. Phys. J. B 85, 414 (2012)

    Article  ADS  Google Scholar 

  17. J.G. Bednorz, K.A. Muller, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  18. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  19. R. Jha, A. Kumar, S.K. Singh, V.P.S. Awana, J. Appl. Phys. 113, 056102 (2013)

    Article  ADS  Google Scholar 

  20. K. Deguchi, Y. Mizuguchi, S. Demura, H. Hara, T. Watanabe, S.J. Denholme, M. Fujioka, H. Okazaki, T. Ozaki, H. Takeya, T. Yamaguchi, O. Miura, Y. Takano, Europhys. Lett. 101, 17004 (2013)

    Article  ADS  Google Scholar 

  21. H. Kotegawa, Y. Tomita, H. Tou, H. Izawa, Y. Mizuguchi, O. Miura, S. Demura, K. Deguchi, Y. Takano, J. Phys. Soc. Jpn. 81, 103702 (2012)

    Article  ADS  Google Scholar 

  22. H. Usui, K. Suzuki, K. Kuroki, Phys. Rev. B 86, 220501 (2012)

    Article  ADS  Google Scholar 

  23. I.R. Shein, A.L. Ivanovskii, JETP Lett. 96, 769 (2012)

    Article  ADS  Google Scholar 

  24. B. Li, Z.W. Xing, G.Q. Huang, Europhys. Lett. 101, 47002 (2013)

    Article  ADS  Google Scholar 

  25. X. Wan, H.-C. Ding, S.Y. Savrasov, C.-G. Duan, Phys. Rev. B 87, 115124 (2013)

    Article  ADS  Google Scholar 

  26. T. Yildirim, Phys. Rev. B 87, 020506 (2013)

    Article  ADS  Google Scholar 

  27. T. Zhou, Z.D. Wang, J. Supercond. Nov. Magn. 26, 2735 (2013)

    Article  Google Scholar 

  28. G.B. Martins, A. Moreo, E. Dagotto, Phys. Rev. B 87, 081102 (2013)

    Article  ADS  Google Scholar 

  29. Y. Liang, X. Wu, W.-F. Tsai, J.P. Hu, Front. Phys. 9, 194 (2014)

    Article  Google Scholar 

  30. Y. Yang, W.-S. Wang, Y.-Y. Xiang, Z.-Z. Li, Q.-H. Wang, Phys. Rev. B 88, 094519 (2013)

    Article  ADS  Google Scholar 

  31. H. Lei, K. Wang, M. Abeykoon, E.S. Bozin, C. Petrovic, Inorg. Chem. 52, 10685 (2013)

    Article  Google Scholar 

  32. X. Lin, X. Ni, B. Chen, X. Xu, X. Yang, J. Dai, Y. Li, X. Yang, Y. Luo, Q. Tao, G. Cao, Z. Xu, Phys. Rev. B 87, 020504 (2013)

    Article  ADS  Google Scholar 

  33. Y. Li, X. Lin, L. Li, N. Zhou, X. Xu, C. Cao, J. Dai, L. Zhang, Y. Luo, W. Jiao, Q. Tao, G. Cao, Z. Xu, Supercond. Sci. Technol. 27, 035009 (2014)

    Article  ADS  Google Scholar 

  34. H. Sakai, D. Kotajima, K. Saito, H. Wadati, Y. Wakisaka, M. Mizumaki, K. Nitta, Y. Tokura, S. Ishiwata, J. Phys. Soc. Jpn. 83, 014709 (2014)

    Article  ADS  Google Scholar 

  35. V. Milman, B. Winkler, J.A. White, C.J. Packard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Int. J. Quantum. Chem. 77, 895 (2000)

    Article  Google Scholar 

  36. M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  38. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  39. R. Jha, B. Tiwari, V.P.S. Awana, J. Phys. Soc. Jpn. 83, 063707 (2014)

    Article  ADS  Google Scholar 

  40. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev 108, 1175 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009). http://www.quantum-espresso.org

  42. W.L. McMillan, Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  43. H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, Phys. Rev. 62, 020513 (2002)

    Article  Google Scholar 

  44. G.Y. Gao, Y.L. Niu, T. Cui, L.J. Zhang, Y. Li, Y. Xie, Z. He, Y.M. Ma, G.T. Zou, J. Phys.: Condens. Matter 19, 425234 (2007)

  45. H.-Y. Lu, N.-N. Wang, L. Geng, S. Chen, Y. Yang, W.-J. Lu, W.-S. Wang, J. Sun, Europhys. Lett. 110, 17003 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11574108, 11104099, 11404155, and 51302100), the Natural Science Foundation of Anhui Province (Grant Nos. 1408085QA12 and 1508085QA20), the Natural Science Research Project of Higher Education Institutions of Anhui Province (Grant No. KJ2015A120), and the Youth Research Project of Huaibei Normal University (Grant No. 2014xq004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, NN., Lu, HY., Lv, ZT. et al. Effect of La Doping on the Electronic Structure of BiS\(_{2}\)-Based Superconductor Sr\(_{1-x}\)La\(_{x}\)FBiS\(_{2}\) . J Low Temp Phys 181, 242–252 (2015). https://doi.org/10.1007/s10909-015-1341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1341-7

Keywords

Navigation