Skip to main content
Log in

Double Barriers and Magnetic Field in Bilayer Graphene

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study the transmission probability in an AB-stacked bilayer graphene of Dirac fermions scattered by a double-barrier structure in the presence of a magnetic field. We take into account the full four bands structure of the energy spectrum and use the suitable boundary conditions to determine the transmission probability. Our numerical results show that for energies higher than the interlayer coupling, four ways for transmission are possible while for energies less than the height of the barrier, Dirac fermions exhibit transmission resonances and only one transmission channel is available. We show that, for AB-stacked bilayer graphene, there is no Klein tunneling at normal incidence. We find that the transmission displays sharp peaks inside the transmission gap around the Dirac point within the barrier regions while they are absent around the Dirac point in the well region. The effect of the magnetic field, interlayer electrostatic potential, and various barrier geometry parameters on the transmission probabilities is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  4. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)

    Article  ADS  Google Scholar 

  5. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  6. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

  7. E. McCann, V.I. Fałko, Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  8. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fałko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. Geim, Nat. Phys. 2, 177 (2006)

    Article  Google Scholar 

  9. K.S. Novoselov, V.I. Fałko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012)

    Article  ADS  Google Scholar 

  10. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, F. El Gabaly, A.K. Schmid, A.H. Castro Neto, A. Lanzara, Nat. Mater. 7, 259 (2007)

    Article  ADS  Google Scholar 

  11. R. Costa Filho, G. Farias, F. Peeters, Phys. Rev. B 76, 193409 (2007)

  12. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  13. E. McCann, Phys. Rev. B 74, 1 (2006)

    Article  Google Scholar 

  14. F. Guinea, A.H.C. Neto, N.M.R. Peres, Phys. Rev. B 73, 245426 (2006)

    Article  ADS  Google Scholar 

  15. S. Latil, L. Henrard, Phys. Rev. Lett. 97, 036803 (2006)

    Article  ADS  Google Scholar 

  16. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)

    Article  ADS  Google Scholar 

  17. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  18. N. Agrawal, S. Grover, S. Ghosh, J. Phys. 24, 175003 (2012)

    Google Scholar 

  19. B.V. Duppen, F.M. Peeters, Phys. Rev. B 87, 205427 (2013)

    Article  ADS  Google Scholar 

  20. H.A. Alshehab, H. Bahlouli, A. El Mouhafid, A. Jellal,  arXiv:1401.5427 (2014)

  21. A. Jellal, I. Redouani, H. Bahlouli, Phys. E 72, 149 (2015)

    Article  Google Scholar 

  22. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  MATH  ADS  Google Scholar 

  23. J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)

    Article  ADS  Google Scholar 

  24. J.W. McClure, Phys. Rev. 108, 612 (1957)

    Article  ADS  Google Scholar 

  25. I. Snyman, C.W.J. Beenakker, Phys. Rev. B 75, 045322 (2007)

    Article  ADS  Google Scholar 

  26. B. Van Duppen, F.M. Peeters, Europhys. Lett. 102, 27001 (2013)

    Article  ADS  Google Scholar 

  27. N. Gu, M. Rudner, L. Levitov, Phys. Rev. Lett. 107, 156603 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of KFUPM under the Group Project RG1306-1 and RG1306-2. The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Jellal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redouani, I., Jellal, A. & Bahlouli, H. Double Barriers and Magnetic Field in Bilayer Graphene. J Low Temp Phys 181, 197–210 (2015). https://doi.org/10.1007/s10909-015-1339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1339-1

Keywords

Navigation