Skip to main content
Log in

Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

By employing a variational method of Pekar type, we study the eigenenergies and the corresponding eigenfunctions of the ground and the first-excited states of an electron strongly coupled to electron-LO in a RbCl quantum pseudodot (QPD) with a hydrogen-like impurity at the center. This QPD system may be used as a two-level quantum qubit. The expressions of electron’s probability density versus time and the coordinates, and the oscillating period versus the Coulombic impurity potential and the polaron radius have been derived. The investigated results indicate ① that the probability density of the electron oscillates in the QPD with a certain oscillating period of \(T_0 =7.817\mathrm{fs}\), ② that due to the presence of the asymmetrical potential in the z direction of the RbCl QPD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QPD, ③ that the oscillation period is a decreasing function of the Coulombic impurity potential, whereas it is an increasing one of the polaron radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.I. Vasilevskiy, E.V. Anda, S.S. Makler, Phys. Rev. B 70, 035318 (2004)

    Article  ADS  Google Scholar 

  2. S.A. Mikhailov, Phys. Rev. B 54, 14293 (1996)

    Article  ADS  Google Scholar 

  3. F. Pigazo, F.G. Sánchez, F.J. Palomares et al., J. Appl. Phys. 99, 08S503 (2006)

    Article  Google Scholar 

  4. K. Lisa, S. Bednarek, B. Szafran, J. Adamowski, Physica E 17, 494 (2003)

    Article  ADS  Google Scholar 

  5. A.Y. Cho, J.R. Arthur, Prog. Solid State Chem. 10, 157 (1975)

    Article  Google Scholar 

  6. P.D. Dapkus, Annu. Rev. Mater. Sci. 12, 243 (1982)

    Article  ADS  Google Scholar 

  7. T.G. Vargo, P.M. Thompson, L.J. Gerenser et al., Langmuir 8, 130 (1992)

    Article  Google Scholar 

  8. Z. Li, H.J. Xie, C.Y. Chen, Chin. J. Phys. 41, 148 (2003)

    Google Scholar 

  9. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys. 19, 395024 (2007)

    Google Scholar 

  10. R. Khordad, Indian J. Phys. 87, 623 (2013)

    Article  ADS  Google Scholar 

  11. C.E. Creffield, G. Platero, Phys. Rev. B 66, 235303 (2002)

    Article  ADS  Google Scholar 

  12. D.A. Zezyulin, G.L. Alfimov, V.V. Konotop, Phys. Rev. A 81, 013606 (2010)

    Article  ADS  Google Scholar 

  13. W. Xiao, B. Qi, J.L. Xiao, J. Low. Temp. Phys. 179, 166 (2015)

    Article  ADS  Google Scholar 

  14. A. Cetin, Phys. Lett. A 372, 3852 (2008)

    Article  MATH  ADS  Google Scholar 

  15. L.D. Landau, S.I. Pekar, Zh Eksp, Teor. Fiz. 18, 419 (1948)

    Google Scholar 

  16. S.I. Pekar, M.F. Deigen, Zh Eksp, Teor. Fiz. 18, 481 (1948)

    Google Scholar 

  17. S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)

    Google Scholar 

  18. Z.H. Ding, Y. Sun, J.L. Xiao, Int. J. Quantum. Inf. 10, 1250077 (2012)

    Article  MathSciNet  Google Scholar 

  19. Y. Sun, Z.H. Ding, J.L. Xiao, J. At. Mol. Sci. 4, 176 (2013)

    Google Scholar 

  20. J.T. Devreese, Polarons in Ionic Crystals and Polar Semiconductors (North-Holland, Amsterdam, 1972)

    Google Scholar 

  21. W.P. Li, J.W. Yin, Y.F. Yu, Z.W. Wang, J.L. Xiao, J. Low. Temp. Phys. 160, 112 (2010)

    Article  ADS  Google Scholar 

  22. Z.W. Wang, J.L. Xiao, Acta Phys. Sin. 56, 0678 (2007)

    Google Scholar 

  23. W. Xiao, J.L. Xiao, Superlatt. Microstruct. 52, 851 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation of China under Grant Nos. 11464033 and 11464034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, XJ., Qi, B. & Xiao, JL. Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit. J Low Temp Phys 180, 315–320 (2015). https://doi.org/10.1007/s10909-015-1316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1316-8

Keywords

Navigation