Vortex Reconnections in Anisotropic Trapped Three-Dimensional Bose–Einstein Condensates

Abstract

Quantum vortex reconnections can be considered as a fundamental unit of interaction in complex turbulent quantum gases. Understanding the dynamics of single vortex reconnections as elementary events is an essential precursor to the explanation of the emergent properties of turbulent quantum gases. It is thought that a lone pair of quantum vortex lines will inevitably interact given a sufficiently long time. This paper investigates aspects of reconnections of quantum vortex pairs imprinted in a Bose–Einstein condensate with 101 bosons held in an anisotropic three-dimensional trap using an exact many-body treatment. In particular, the impact of the interaction strength and the trap anisotropy in the reconnection time is studied. It is found that interaction strength has no effect on reconnection time over short time scales and that the trap anisotropy can cause the edge of the condensate to interfere with the reconnection process. It is also found that the initially coherent system fragments very slowly, even for a relatively large interaction strength, and therefore the system tends to stay condensed during the reconnections.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    \(L\) is chosen to be \(L=1\,\upmu \)m, \(m\) is taken to be the mass of an \(^{87}\mathrm{{Rb}}\) atom, \(m=86.90918u\) [31], such that the scaling factor corresponds to an angular frequency of \(\omega =731\) rad/s.

References

  1. 1.

    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  2. 2.

    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  3. 3.

    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  4. 4.

    R.P. Feynman, Prog. Low Temp. Phys. 1, 17 (1955)

    Google Scholar 

  5. 5.

    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002)

    Article  ADS  Google Scholar 

  6. 6.

    S.K. Nemirovskii, Phys. Rep. 524, 85 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. 7.

    E.A.L. Henn, J.A. Seman, G. Roati, K.M.F. Magalhães, V.S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009)

    Article  ADS  Google Scholar 

  8. 8.

    E.A.L. Henn, J.A. Seman, G. Roati, K.M.F. Magalhães, V.S. Bagnato, J. Low Temp. Phys. 158, 435 (2009)

    Article  ADS  Google Scholar 

  9. 9.

    A.C. White, B.P. Anderson, V.S. Bagnato, Proc. Natl. Acad. Sci. USA 111, 4719 (2014)

    Article  ADS  Google Scholar 

  10. 10.

    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  11. 11.

    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  12. 12.

    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, J. Mod. Opt. 47, 2715 (2000)

    Article  ADS  Google Scholar 

  13. 13.

    E.P. Gross, Il Nuovo Cimento 20, 454 (1961)

    Article  MATH  Google Scholar 

  14. 14.

    L.P. Pitaevskii, Soviet Phys.-JETP (USSR) 13, 451 (1961)

    MathSciNet  Google Scholar 

  15. 15.

    A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  16. 16.

    A.L. Fetter, J. Low Temp. Phys. 161, 445 (2010)

    Article  ADS  Google Scholar 

  17. 17.

    W.T. Ashurst, D.I. Meiron, Phys. Rev. Lett. 58, 1632 (1987)

    Article  ADS  Google Scholar 

  18. 18.

    J. Koplik, H. Levine, Phys. Rev. Lett. 71, 1375 (1993)

    Article  ADS  Google Scholar 

  19. 19.

    A.T.A.M. de Waele, R.G.K.M. Aarts, Phys. Rev. Lett. 72, 482 (1994)

    Article  ADS  Google Scholar 

  20. 20.

    R. Tebbs, A.J. Youd, C.F. Barenghi, J. Low Temp. Phys. 162, 314 (2010)

    Article  ADS  Google Scholar 

  21. 21.

    A.J. Allen, S. Zuccher, M. Caliari, N.P. Proukakis, N.G. Parker, C.F. Barenghi, Phys. Rev. A 90, 013601 (2014)

    Article  ADS  Google Scholar 

  22. 22.

    S. Zuccher, M. Caliari, A.W. Baggaley, C.F. Barenghi, Phys. Fluids 24, 125108 (2012)

    Article  ADS  Google Scholar 

  23. 23.

    S.K. Nemirovskii, J. Low Temp. Phys. 171, 504 (2013)

    Article  ADS  Google Scholar 

  24. 24.

    S.K. Nemirovskii, Phys. Rev. B 90, 104506 (2014)

    Article  ADS  Google Scholar 

  25. 25.

    M.C. Tsatsos, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. A 82, 033613 (2010)

    Article  ADS  Google Scholar 

  26. 26.

    R. Zamora-Zamora, M. Lozada-Hidalgo, S.F. Caballero-Benítez, V. Romero-Rochín, Phys. Rev. A 86, 053624 (2012)

    Article  ADS  Google Scholar 

  27. 27.

    A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. Lett. 99, 030402 (2007)

    Article  ADS  Google Scholar 

  28. 28.

    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, J. Chem. Phys. 127, 154103 (2007)

    Article  ADS  Google Scholar 

  29. 29.

    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. A 77, 033613 (2008)

    Article  ADS  Google Scholar 

  30. 30.

    A.U.J. Lode and M.C. Tsatsos, The Recursive Multiconfigurational Time-Dependent Hartree for Bosons Package, version 1.0, (2014), http://ultracold.org

  31. 31.

    J.R. de Laeter, J.K. Böhlke, P. de Biévre, H. Hidaka, H.S. Peiser, K.J.R. Rosman, P.D.P. Taylor, Pure Appl. Chem. 75, 683 (2003)

    Article  Google Scholar 

  32. 32.

    O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)

    Article  ADS  MATH  Google Scholar 

  33. 33.

    P. Noziéres, D. Saint, J. Phys. (Paris) 43, 1133 (1982)

    Article  Google Scholar 

  34. 34.

    V.I. Yukalov, A.N. Novikov, V.S. Bagnato, Laser Phys. Lett. 11, 095501 (2014)

    Article  ADS  Google Scholar 

  35. 35.

    S. Nazarenko, R. West, J. Low Temp. Phys. 132, 1 (2003)

    Article  ADS  Google Scholar 

  36. 36.

    Videos of the reconnections for: \(\varepsilon =1\) http://youtu.be/VLMY1eYLr0g, \(\varepsilon =2\) http://youtu.be/r5pY7pfMTUg, \(\varepsilon =3\) http://youtu.be/ifEFffVv93U

Download references

Acknowledgments

The authors wish to thank O.E. Alon for useful comments and FAPESP for financial support. A.U.J.L. acknowledges financial support by the Swiss SNF and the NCCR Quantum Science and Technology. T.W. thanks DAAD for financial support. Computational time in the Hermit Cray computer of the High Performance Computing Center in Stuttgart is also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. C. Tsatsos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wells, T., Lode, A.U.J., Bagnato, V.S. et al. Vortex Reconnections in Anisotropic Trapped Three-Dimensional Bose–Einstein Condensates. J Low Temp Phys 180, 133–143 (2015). https://doi.org/10.1007/s10909-015-1285-y

Download citation

Keywords

  • Ultracold bosons
  • Many-body
  • MCTDHB
  • http://ultracold.org
  • Quantum fluids
  • Quantized vortices