Skip to main content
Log in

Ferroelectric Relaxor Behavior and Impedance Spectroscopy of Pr and Sn-Doped La\(_{0.57}\)Ba\(_{0.33}\)MnO\(_{3 }\) Ceramics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The ceramic sample is synthesized in the solid-state with a nominal chemical formula \(\mathrm{La}_{0.57}^{3+} \Pr _{0.1}^{3+} \mathrm{Ba}_{0.33}^{2+}\mathrm{Mn}_{0.67}^{3+} \mathrm{Mn}_{0.23}^{4+}\mathrm{Sn}_{0.1}^{4+}\mathrm{O}_3^{2-}\)(LPBMS). X-ray diffraction patterns confirm the formation of a single-phase cubic crystal symmetry (\(\mathrm{Pm}\bar{3}\mathrm{m})\). Furthermore, the complex impedance plots display a single semicircle highlighting the influence of grain resistance on the electrical behavior. A detailed study of impedance parameters shows the non-Debye temperature of relaxation phenomena in the system. Over four decades in frequency, sample Nyquist plots were fitted by adopting an equivalent circuit using constant phase elements. The temperature dependence of dielectric permittivity was investigated in the sample, and the dielectric relaxation behavior was observed in these ferroelectrics with diffused phase transition. Quasiferroeletric state theory has been introduced to explain the dielectric results of the LPBMS relaxors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.A. Smolenskii, V.A. Isupov, Dokl. Akad. Nauk SSSR 9, 653 (1953)

    Google Scholar 

  2. G.A. Smolenskii, A.I. Agranovskaya, Sov. Phys. Tech. Phys 3, 1380 (1958)

    Google Scholar 

  3. S. Nomura, K. Uchino, Ferroelectrics 50, 197 (1983)

    Article  Google Scholar 

  4. N. Setter, L.E. Cross, J. Appl. Phys. 51, 4356 (1980)

    Article  ADS  Google Scholar 

  5. G.A. Smolenskii, J. Phs, Soc. Jpn. 28, 26 (1970)

    Google Scholar 

  6. N. Setter, L.E. Cross, J. Appl. Phys. 51, 3399 (1984)

    Google Scholar 

  7. X. Yao, Z.L. Chen, L.E. Cross, J. Appl. Phys. 54, 3399 (1984)

    Google Scholar 

  8. L.E. Cross, Ferroelectrics 76, 241 (1987)

  9. D. Viehland, S.J. Jang, L.E. Cross, M. Wutting, J. Appl. Phys. 68, 2916 (1990)

    Article  ADS  Google Scholar 

  10. V. Westphal, W. Kleemann, M.D. Glinchuk, Phys. Rev. Lett 68, 847 (1992)

    Article  ADS  Google Scholar 

  11. Wen Zhang, De-Hua Liu, Solid. State. Commun 149, 146 (2009)

    Article  ADS  Google Scholar 

  12. F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, E.K. Hlil, J. Supercond. Nov. Magn. 25, 1115 (2011)

    Article  Google Scholar 

  13. A. Sundaresan, C.N.R. Rao, J. Phys. Cond. Matter. 19, 496217 (2007)

    Article  Google Scholar 

  14. G. Chern, L.R. Song, J.B. Shi, Physica C 97, 253 (1995)

    Google Scholar 

  15. G.P. Mazzara et al., Phys. Rev. B 47, 8119 (1993)

    Article  ADS  Google Scholar 

  16. J.B. Shi, Physica. C 305, 35 (1998)

    Article  ADS  Google Scholar 

  17. A.P. Ramirez et al., Solid State Commun. 115, 217 (2000)

    Article  ADS  Google Scholar 

  18. C. CHomes et al., Science 293, 673 (2001)

  19. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)

    Article  ADS  Google Scholar 

  20. J. Kim, D. Do, S. Kim, T. Song, J. Korean Phys. Soc 60, 198 (2012)

    Article  ADS  Google Scholar 

  21. J. R. Macdonald, Electrochem. Acta. 223, 25 (1987)

  22. A. Dhahri, F.I.H. Rhouma, J. Dhahri, E.K. Hlil, J. Ceram. Int. 40, 459 (2013)

    Article  Google Scholar 

  23. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  24. L.B. McCusker, R.B. Von DReele, D.E. Cox, D. Loueer, P. Scardi, J. Appl. Cryst. 32, 36 (1999)

  25. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, Solid State Commun. 149, 1919 (2009)

    Article  ADS  Google Scholar 

  26. M. Birkholz, Thin film analysis by X-ray scattering (Wiley-VCH, Weinheim, 2006)

  27. G.K. Williamson, W.H. Hall, Acta Metall 1, 22 (1953)

    Article  Google Scholar 

  28. K. Prasad, K. Chandra, K.P. Bhagat, S. Choudhary, S.N. Kulkarni, J. Am. Ceram. Soc. 93, 190 (2010)

    Article  Google Scholar 

  29. S. Bhagat, K. Prasad, Phys. Status Solidi (a) 207, 1232 (2010)

    Article  ADS  Google Scholar 

  30. A. Maeda, H. Kitano, R. Inoue, J. Phys. Condens. Matter. 17, R 143 (2005)

  31. F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, J. Appl. Phys. A 108, 593 (2012)

    Article  ADS  Google Scholar 

  32. A. Omri, M. Bejar, E. Dhahri, M.E.S Souni, M.A. Valente, M.P.F. Graca, L.C. Costa, J. Alloy. Comp. 536, 173 (2012)

  33. S.H. Song, P. Xiao, J. Mater. Sci. 38, 499 (2003)

    Article  ADS  Google Scholar 

  34. D. Czekaj, A. Lisinska-Czekaj, T. Orkisz, J. Orkisz, G. Smalarz, J. Eur. Ceram. Soc. 30, 465 (2010)

    Article  Google Scholar 

  35. M. Idrees, M. Nadeem, M.M. Hassan, J. Physica D 43, 155401 (2010)

    Article  ADS  Google Scholar 

  36. M. Younas, M. Nadeem, M. Atif, R. Grossigner, J. Appl. Phys. 109, 93704 (2010)

    Article  Google Scholar 

  37. H. Dhaouadi, A. Madani, F. Touati, Mater. Lett. 64, 2395 (2010)

    Article  Google Scholar 

  38. V.D. Nithya, R. Kalai Selvan, Physica B: Condens. Matter. |bf 406, 24 (2011)

  39. J.P. Boilot, G. Collin, P. Colomban, R. Comes, Phys. Rev. B 12, 5912 (1980)

    Article  ADS  Google Scholar 

  40. D. Patidar, N.S. Saxena, T.P. Sharma, J. Mod. Opt. 55, 79 (2008)

    Article  Google Scholar 

  41. C.R. Zhou, X.Y. Liu, W.Z. Li, C.L. Yuan, Solid State Commun. 149, 481 (2009)

    Article  ADS  Google Scholar 

  42. P. Goel, K.L. Yadav, A.R. James, J. App. Phys. D 37, 3174 (2004)

    Article  ADS  Google Scholar 

  43. F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, K. Khirouni, J. App. Phys. A 114, 911 (2014)

    Article  ADS  Google Scholar 

  44. G. Burns, F.H. Dacol, Phys. Rev. B 28, 2527 (1983)

    Article  ADS  Google Scholar 

  45. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992)

    Article  ADS  Google Scholar 

  46. H. Yu, Z.G. Ye, J. App. Phys. 103, 034114 (2008)

    Article  ADS  Google Scholar 

  47. K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55 (1982)

    Article  Google Scholar 

  48. C. Ang, A. Jing, Z. Yu, J. Phys. Condens. Matter. 14, 8901 (2002)

    Article  ADS  Google Scholar 

  49. P. Victor, R. Ranjith, S.B. Krupanidhi, J. Appl. Phys. 94, 7702 (2003)

    Article  ADS  Google Scholar 

  50. X. Chou, J. Zhai, J. Sun, X. Yao, Ceram. Int. 34, 911 (2008)

    Article  Google Scholar 

  51. A.A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31 (2006)

    Article  ADS  Google Scholar 

  52. X. Long, Z.-G. Ye, Appl. Phys. Lett. 90, 112905 (2007)

    Article  ADS  Google Scholar 

  53. Z.Y. Cheng, R.S. Katiyar, X. Yao, A. Guo, Phys. Rev. B 55, 8165 (1997)

    Article  ADS  Google Scholar 

  54. H. Martirena, J. Burfoot, Ferroelectrics 7, 151 (1974)

    Article  Google Scholar 

  55. Nikolina Pavlovic, Vladimir Koval, Jan Dusza, Vladimir V. Srdic, J. Int. Ceram. 37, 487 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. I. H. Rhouma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhouma, F.I.H., Dhahri, A., Lahmar, L. et al. Ferroelectric Relaxor Behavior and Impedance Spectroscopy of Pr and Sn-Doped La\(_{0.57}\)Ba\(_{0.33}\)MnO\(_{3 }\) Ceramics. J Low Temp Phys 178, 272–284 (2015). https://doi.org/10.1007/s10909-014-1260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1260-z

Keywords

Navigation