Skip to main content
Log in

Thermal Counterflow in a Periodic Channel with Solid Boundaries

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid \(^{4}\)He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  2. W.F. Vinen, Proc. R. Soc. A 240(1220), 114 (1957). doi:10.1098/rspa.1957.0071

    Article  ADS  Google Scholar 

  3. W.F. Vinen, Proc. R. Soc. A 240(1220), 128 (1957). doi:10.1098/rspa.1957.0072

    Article  ADS  Google Scholar 

  4. W.F. Vinen, Proc. R. Soc. A 242(1231), 493 (1957). doi:10.1098/rspa.1957.0191

    Article  ADS  Google Scholar 

  5. W.F. Vinen, Proc. R. Soc. A 243(1234), 400 (1958). doi:10.1098/rspa.1958.0007

    Article  ADS  Google Scholar 

  6. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002). doi:10.1023/A:1019695418590

    Article  ADS  Google Scholar 

  7. L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24(1), 011301 (2012). doi:10.1063/1.3678335

    Article  ADS  Google Scholar 

  8. L. Skrbek, A.V. Gordeev, F. Soukup, Phys. Rev. E 67, 047302 (2003). doi:10.1103/PhysRevE.67.047302

    Article  ADS  Google Scholar 

  9. W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Phys. Rev. Lett. 105, 045301 (2010). doi:10.1103/PhysRevLett.105.045301

  10. K.W. Schwarz, Phys. Rev. B 38(4), 2398 (1988)

    Article  ADS  Google Scholar 

  11. C. Barenghi, L. Skrbek, J. Low Temp. Phys. 146(1–2), 5 (2007). doi:10.1007/s10909-006-9270-0

    Article  ADS  Google Scholar 

  12. H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81(10), 104511 (2010). doi:10.1103/PhysRevB.81.104511

    Article  ADS  Google Scholar 

  13. H. Adachi, M. Tsubota, Phys. Rev. B 83, 132503 (2011). doi:10.1103/PhysRevB.83.132503

    Article  ADS  Google Scholar 

  14. A.W. Baggaley, L.K. Sherwin, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 86, 104501 (2012). doi:10.1103/PhysRevB.86.104501

    Article  ADS  Google Scholar 

  15. R.G.K.M. Aarts, A.T.A.M. de Waele, Phys. Rev. B 50, 10069 (1994). doi:10.1103/PhysRevB.50.10069

    Article  ADS  Google Scholar 

  16. L. Galantucci, C. Barenghi, M. Sciacca, M. Quadrio, P. Luchini, J. Low Temp. Phys. 162(3–4), 354 (2011). doi:10.1007/s10909-010-0266-4

  17. A.W. Baggaley, S. Laizet, Phys. Fluids 25, 115101 (2013)

    Article  ADS  Google Scholar 

  18. K.W. Schwarz, Phys. Rev. B 31, 5782 (1985). doi:10.1103/PhysRevB.31.5782

    Article  ADS  Google Scholar 

  19. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217 (1998)

    Article  ADS  Google Scholar 

  20. D. Kivotides, C.F. Barenghi, D.C. Samuels, Science 290, 777 (2000)

    Article  ADS  Google Scholar 

  21. J. Tough, in Progress of Low Temperature Physics, vol. VIII, ed. by D. Brewer (North-Holland Publications, Amsterdam, 1982)

  22. W. Vinen, J. Low Temp. Phys. 175(1–2), 305 (2014). doi:10.1007/s10909-013-0911-9

    Article  ADS  Google Scholar 

  23. A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 84, 020504 (2011). doi:10.1103/PhysRevB.84.020504

    Article  ADS  Google Scholar 

  24. A. Baggaley, J. Low Temp. Phys. 168(1–2), 18 (2012). doi:10.1007/s10909-012-0605-8

    Article  ADS  Google Scholar 

  25. R.D. Moser, J. Kim, N.N. Mansour, Phys. Fluids 11(4), 943 (1999)

    Article  ADS  MATH  Google Scholar 

  26. C.F. Barenghi, R.J. Donnelly, W.F. Vinen, J. Low Temp. Phys. 52, 189 (1983)

    Article  ADS  Google Scholar 

  27. S.A. Orszag, J. Fluid Mech. 50, 689 (1971)

    Article  ADS  MATH  Google Scholar 

  28. S. Babuin, M. Stammeier, E. Varga, M. Rotter, L. Skrbek, Phys. Rev. B 86, 134515 (2012)

    Article  ADS  Google Scholar 

  29. T.V. Chagovets, L. Skrbek, Phys. Rev. Lett. 100, 215302 (2008)

    Article  ADS  Google Scholar 

  30. C. Barenghi, R. Donnelly, W. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics (Springer, Berlin Heidelberg, 2001)

    Book  Google Scholar 

  31. R. Ostermeier, W. Glaberson, J. Low Temp. Phys. 21(1–2), 191 (1975). doi:10.1007/BF01141298

  32. M. Tsubota, C.F. Barenghi, T. Araki, A. Mitani, Phys. Rev. B 69, 134515 (2004). doi:10.1103/PhysRevB.69.134515

    Article  ADS  Google Scholar 

  33. D. Poole, H. Scoffield, C. Barenghi, D. Samuels, J. Low Temp. Phys. 132(1–2), 97 (2003)

    Article  ADS  Google Scholar 

  34. C. Barenghi, D. Samuels, J. Low Temp. Phys. 136(5–6), 281 (2004)

    Article  ADS  Google Scholar 

  35. V. Eltsov, R. de Graaf, R. Heikkinen, M. Krusius, J. Low Temp. Phys. 161(5–6), 474 (2010). doi:10.1007/s10909-010-0243-y

    Article  ADS  Google Scholar 

  36. V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hänninen, M. Krusius, V.S. L’vov, Phys. Rev. Lett. 105, 125301 (2010). doi:10.1103/PhysRevLett.105.125301

  37. F. Charru, P. de Forcrand-Millard, Hydrodynamic Instabilities. Cambridge Texts in Applied Mathematics (Cambridge University Press, New york, 2011)

    Book  Google Scholar 

  38. W. Guo, D. McKinsey, A. Marakov, K. Thompson, G. Ihas, W. Vinen, J. Low Temp. Phys. 171(5–6), 497 (2013). doi:10.1007/s10909-012-0708-2

    Article  ADS  Google Scholar 

  39. L. Skrbek. Private communication (2013)

Download references

Acknowledgments

We would like to acknowledge Jeremie Bec and Risto Hänninen for helpful discussions. This work was supported by the Carnegie Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Baggaley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baggaley, A.W., Laurie, J. Thermal Counterflow in a Periodic Channel with Solid Boundaries. J Low Temp Phys 178, 35–52 (2015). https://doi.org/10.1007/s10909-014-1226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1226-1

Keywords

Navigation