Skip to main content
Log in

Observation of a Bulk Nodal-Gap in Overdoped Y\(_{0.9}\)Ca\(_{0.1}\)Ba\(_{2}\)Cu\(_{3}\)O\(_{7-\delta }\) Thin Films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Complex conductivity of overdoped Y\(_{0.9}\)Ca\(_{0.1}\)Ba\(_{2}\)Cu\(_{3}\)O\(_{7-\delta }\) thin films was measured in Terahertz frequency using frequency and time domain methods. The films were measured in the frequency range of 3–100 cm\(^{-1}\) and in the temperature range of 20–300 K. Results show a possible deviation from a pure \(d_{x^{2}-y^{2}}\)-wave superconductor, indicated by the existence of an energy sub-gap in overdoped Y\(_{0.9}\)Ca\(_{0.1}\)Ba\(_{2}\)Cu\(_{3}\)O\(_{7-\delta }\) films. Evidence for this sub-gap appears as non-monotonic behavior of \(\sigma _{1}(\omega ,T)\) as a function of frequency followed by a sharp decrease at low frequencies, and a dip in the imaginary part of the optical conductivity multiplied by frequency, \(\omega {{\sigma }_{2}}(\omega ,T)\). The mentioned features were observed at energy of about 1.2 meV in 10 % Ca-doped YBCO thin films. Our complex conductivity spectra are in agreement with the theoretical prediction obtained by using a mixed symmetry order parameter within the Born limit, shown by Schürrer et al. We suggest that these observations are direct evidence for a nodal gap obtained in a \(d_{x^{2}-y^{2}}\)-wave superconductor and can be theoretically clarified by adding an imaginary component as \(is\) or \(i{{d}_{xy}}\) to the main \(d_{x^{2}-y^{2}}\)-wave order parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Deutscher, Rev. Mod. Phys. 77, 109 (2005)

    Article  ADS  Google Scholar 

  2. M. Fogelström, D. Rainer, J.A. Sauls, Phys. Rev. Lett. 74, 3451 (1995)

    Article  Google Scholar 

  3. Y. Dagan, G. Deutscher, Eur. Phys. Lett. 57, 4444 (2002)

    Article  Google Scholar 

  4. D. Pines, Physica C 235–240, 113 (1994)

    Article  Google Scholar 

  5. D. Pines, P. Monthoux, J. Phys. Chem. Solids 56, 1651 (1995)

    Article  ADS  Google Scholar 

  6. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  7. P.W. Anderson, Physica C 153, 527 (1988)

    Article  ADS  Google Scholar 

  8. S. Sachdev, Physica A 313, 252–283 (2002)

    Article  ADS  Google Scholar 

  9. G. Sangiovanni, M. Capone, S. Caparara, C. Castellani, C. Di Castro, M. Grilli (2001). arXiv:Cond-mat/o111107

  10. J. Friedel, M. Kohmoto, Int. J. Mod. Phys. B 15, 51 (2001)

    Article  Google Scholar 

  11. Y. Dagan, R. Krupke, G. Deutscher, Phys. Rev. B 62, 146 (2000)

    Article  ADS  Google Scholar 

  12. C. Tsuei, J. Kirtley, Physica C: Supercond. 341, 1625 (2000)

    Article  ADS  Google Scholar 

  13. F. Wenger, S. Östlund, Phys. Rev. B 47, 5977 (1993)

    Article  ADS  Google Scholar 

  14. R. Krupke, G. Deutscher, Phys. Rev. Lett. 83, 4634 (1999)

    Article  ADS  Google Scholar 

  15. A. Sharoni, O. Millo, A. Kohen, Y. Dagan, R. Beck, G. Deutscher, G. Koren, Phys. Rev. B 65, 1 (2002)

    Article  Google Scholar 

  16. Y. Dagan, R. Krupke, G. Deutscher, Eur. Phys. Lett. 51, 116 (2000)

    Article  ADS  Google Scholar 

  17. E. Farber, G. Deutscher, B.P. Gorshunov, M. Dressel, Europhys. Lett. 67, 834 (2004)

    Article  ADS  Google Scholar 

  18. E. Farber, G. Deutscher, J. Low Temp. Phys. 131, 563 (2003)

    Article  ADS  Google Scholar 

  19. D.N. Basov, T. Timusk, Rev. Mod. Phys. 77, 721 (2005)

    Article  ADS  Google Scholar 

  20. I. Schürrer, E. Schachinger, J.P. Carbotte, Physica C: Supercond. 303, 287 (1998)

    Article  ADS  Google Scholar 

  21. R. Krupke, M. Azoulay, G. Deutscher, in Second-Generation HTS Conductors, A. Goyal, (ed.). Kluwer Academic Publishers, Philip Drive Norwell, MA (2000).

  22. C.A. Schmuttenmaer, Chem. Rev. 104, 1759 (2004)

    Article  Google Scholar 

  23. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (2006)

    Article  ADS  Google Scholar 

  24. B.P. Gorshunov, A.A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005)

    Article  ADS  Google Scholar 

  25. A.V. Pronin, M. Dressel, A. Pimenov, A. Loidl, I.V. Roshchin, L.H. Greene, Phys. Rev. B 57, 416 (1998)

    Article  Google Scholar 

  26. M.V. Abrashev, A.P. Litvinchuk, M.N. Iliev, R.L. Meng, V.N. Popov, V.G. Ivanov, R.A. Chakalov, C. Thomsen, Phys. Rev. B 59, 4146 (1999)

    Article  ADS  Google Scholar 

  27. A. Berlinsky, C. Kallin, G. Rose, A.C. Shi, Phys. Rev. B 48, 4074 (1993)

    Article  ADS  Google Scholar 

  28. A.B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005)

    Article  ADS  Google Scholar 

  29. E. Farber, G. Deutscher, J.P. Contour, E. Jerby, Eur. Phys. J. B 5, 159 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bachar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachar, N., Bechor, Y., Gorshunov, B. et al. Observation of a Bulk Nodal-Gap in Overdoped Y\(_{0.9}\)Ca\(_{0.1}\)Ba\(_{2}\)Cu\(_{3}\)O\(_{7-\delta }\) Thin Films. J Low Temp Phys 179, 108–112 (2015). https://doi.org/10.1007/s10909-014-1223-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1223-4

Keywords

Navigation