Skip to main content

Geometrical Confinement Effects in Layered Mesoscopic Vortex Matter

Abstract

We study the geometrical confinement effect in Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O\(_{8 +\delta }\) mesoscopic vortex matter with edge-to-surface ratio of 7–12 %. Samples have in-plane square and circular edges, 30 \(\upmu \)m widths, and \(\sim \)2 \(\upmu \)m thickness. Direct vortex imaging reveals the compact planes of the structure align with the sample edge by introducing topological defects. The defect density is larger for circular than for square edges. Molecular dynamics simulations suggest that this density is not an out-of-equilibrium property but rather determined by the geometrical confinement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    V.V. Moshchalkov et al., Nature 373, 319 (1995)

    Article  ADS  Google Scholar 

  2. 2.

    A.K. Geim et al., Nature 390, 256 (1997)

    Article  ADS  Google Scholar 

  3. 3.

    V.A. Schweigert, F.M. Peeters, P.S. Deo, Phys. Rev. Lett. 81, 2783 (1998)

    Article  ADS  Google Scholar 

  4. 4.

    J.J. Palacios, Phys. Rev. B 58, R5948 (1998)

    Article  ADS  Google Scholar 

  5. 5.

    V. Bruyndoncx et al., Phys. Rev. B 60, 10468 (1999)

    Article  ADS  Google Scholar 

  6. 6.

    L.R.E. Cabral, B.J. Baelus, F.M. Peeters, Phys. Rev. B 70, 144523 (2004)

    Article  ADS  Google Scholar 

  7. 7.

    Y. Fasano, J. Herbsommer, F. de la Cruz, Phys. Stat. Sol. (b) 215, 563 (1999)

    Article  ADS  Google Scholar 

  8. 8.

    M. Menghini et al., Phys. Rev. Lett. 90, 147001 (2003)

    Article  ADS  Google Scholar 

  9. 9.

    A.P. Petrovic et al., Phys. Rev. Lett. 103, 257001 (2009)

    Article  ADS  Google Scholar 

  10. 10.

    S. Demirdis et al., Phys. Rev. B 84, 094517 (2011)

    Article  ADS  Google Scholar 

  11. 11.

    Y.M. Wang et al., Phys. Rev. B 65, 184506 (2002)

    Article  ADS  Google Scholar 

  12. 12.

    H. Pastoriza et al., Phys. Rev. Lett. 72, 2951 (1994)

    Article  ADS  Google Scholar 

  13. 13.

    E. Zeldov et al., Nature 375, 373 (1995)

    Article  ADS  Google Scholar 

  14. 14.

    D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. 15.

    L.I. Glazman, A.E. Koshelev, Phys. Rev. B 43, 2835 (1991)

    Article  ADS  Google Scholar 

  16. 16.

    H. Pastoriza, P.H. Kes, Phys. Rev. Lett. 75, 3525 (1995)

    Article  ADS  Google Scholar 

  17. 17.

    Y. Fasano et al., Proc. Nat. Acad. Sci. 102, 3898 (2005)

    Article  ADS  Google Scholar 

  18. 18.

    M.I. Dolz, A.B. Kolton, H. Pastoriza, Phy. Rev. B 81, 092502 (2010)

    Article  ADS  Google Scholar 

  19. 19.

    Y. Fasano et al., Solid State Commun. 128, 51 (2003)

    Article  ADS  Google Scholar 

  20. 20.

    M.I. Dolz et al., Phys. Rev. B 1212, 4564 (2014)

    Google Scholar 

  21. 21.

    M. Konczykowski, et al., Cond-Mat. arXiv:1212.4564

  22. 22.

    A. Kolton, D. Domínguez, N. Grønbech-Jensen, Phys. Rev. Lett. 83, 3061 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. R. Cejas Bolecek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cejas Bolecek, N.R., Dolz, M.I., Kolton, A. et al. Geometrical Confinement Effects in Layered Mesoscopic Vortex Matter. J Low Temp Phys 179, 35–41 (2015). https://doi.org/10.1007/s10909-014-1218-1

Download citation

Keywords

  • Vortex matter
  • Mesoscopic physics
  • Layered superconductors