Skip to main content
Log in

The Electron Capture \(^{163}\)Ho Experiment ECHo

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The determination of the absolute scale of the neutrino masses is one of the most challenging present questions in particle physics. The most stringent limit, \(m(\bar{\nu }_{\mathrm {e}})< 2\) eV, was achieved for the electron anti-neutrino mass. Different approaches are followed to reach a sensitivity on neutrino masses in the sub-eV range. Among them, experiments exploring the beta decay or electron capture of suitable nuclides can provide information on the electron neutrino mass value. We present the electron capture \(^{163}\)Ho experiment ECHo, which aims to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured energy spectrum following electron capture in \(^{163}\)Ho. A high precision and high statistics spectrum will be measured with arrays of metallic magnetic calorimeters. We discuss some of the essential aspects of ECHo to reach the proposed sensitivity: detector optimization and performance, multiplexed readout, \(^{163}\)Ho source production and purification, as well as a precise theoretical and experimental parameterization of the calorimetric EC spectrum including in particular the value of \(Q_{\mathrm {EC}}\). We present preliminary results obtained with a first prototype of single channel detectors as well as a first 64-pixel chip with integrated micro-wave SQUID multiplexer, which will already allow to investigate \(m(\nu _{\mathrm {e}})\) in the eV range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.L. Fogli et al., Phys. Rev. D 86, 013012 (2012)

    Article  ADS  Google Scholar 

  2. K.N. Abazajian et al., Astropart. Phys. 35, 177 (2011). http://arxiv.org/abs/1103.5083

  3. F.T. Avignone III et al., Rev. Mod. Phys. 80, 481 (2008). http://arxiv.org/abs/arXiv:0708.1033

  4. G. Pagliaroli, F. Rossi Torres, F. Vissani, Astropart. Phys. 33, 287 (2010)

    Article  ADS  Google Scholar 

  5. G. Drexlin et al., Adv. High Energy Phys. 2013, 293986 (2013)

    Article  Google Scholar 

  6. C. Kraus et al., Eur. Phys. J. C 40, 447 (2005)

    Article  ADS  Google Scholar 

  7. V.M. Lobashev et al., Nucl. Phys. A 719, 153c (2003)

    Article  ADS  Google Scholar 

  8. V.N. Aseev et al., Phys. Rev. D 84, 112003 (2011). http://arxiv.org/abs/1108.5034v1

  9. A. De Rujula, M. Lusignoli, Phys. Lett. B 118, 429 (1982)

    Article  ADS  Google Scholar 

  10. A. De Rujula, http://arxiv.org/abs/1305.4857

  11. C. Enss, Top. Appl. Phys. 99, 63–149 (2005)

    Google Scholar 

  12. A. Fleischmann et al., AIP Conf. Proc. 1185, 571 (2009)

    Article  ADS  Google Scholar 

  13. M. Galeazzi et al., http://arxiv.org/abs/1202.4763

  14. C. Pies et al., J. Low Temp. Phys. 167, 269 (2012)

    Article  ADS  Google Scholar 

  15. L. Gastaldo et al., Nucl. Instrum. Method A 711, 150 (2013)

    Article  ADS  Google Scholar 

  16. E. Kugler, Hyperfine Interact. 129, 23 (2000)

    Article  ADS  Google Scholar 

  17. P.C.-O. Ranitzsch et al., J. Low Temp. Phys. 167, 1004 (2012)

    Article  ADS  Google Scholar 

  18. J.A.B. Mates et al., Appl. Phys. Lett. 92(2), 023514 (2008)

    Article  ADS  Google Scholar 

  19. S. Kempf, J. Low Temp. Phys. doi:10.1007/s10909-013-1041-0

  20. J.W. Engle et al., Nucl. Instrum. Methods B 311, 131 (2013)

    Article  ADS  Google Scholar 

  21. I. Usolstev et al., Nucl. Instrum. Methods A 691, 5 (2012)

    Article  ADS  Google Scholar 

  22. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  23. W.F. Egelhoff Jr, Surf. Sci. Rep. 6, 253 (1987)

    Article  ADS  Google Scholar 

  24. M.I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Nucl. Phys. A 859, 140 (2011)

    Article  ADS  Google Scholar 

  25. M. Wang, G. Audi et al., Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  26. J.U. Andersen et al., Phys. Lett. B 113, 72 (1982)

    Article  ADS  Google Scholar 

  27. F. Gatti et al., Phys. Lett. B 398, 415 (1997)

    Article  ADS  Google Scholar 

  28. M. Block et al., Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  29. J. Ketelaer et al., Nucl. Instrum. Methods A 594, 162 (2008)

    Article  ADS  Google Scholar 

  30. J. Repp et al., Appl. Phys. B 107, 983 (2012)

    Article  ADS  Google Scholar 

  31. C. Roux et al., Appl. Phys. B 107, 997 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gastaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastaldo, L., Blaum, K., Doerr, A. et al. The Electron Capture \(^{163}\)Ho Experiment ECHo. J Low Temp Phys 176, 876–884 (2014). https://doi.org/10.1007/s10909-014-1187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1187-4

Keywords

Navigation