Skip to main content
Log in

Effects of Initial Cooling Conditions and Measurement Heights on the Levitation Performance of Bulk MgB\(_{2}\) Superconductor at Different Measurement Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The levitation properties of MgB\(_{2}\) prepared by hot press at 200 \(^{\circ }\)C and then pellet/closed tube method has been investigated. The vertical and lateral levitation forces (\(F_{z}\) and \(F_{x})\) on a cylindrical NdFeB permanent magnet (PM) below a disk-shaped bulk MgB\(_{2}\) were measured during the vertical and lateral traverses of the PM in different cooling heights (CHs) and measurement heights (MHs) at temperatures of 20, 25 and 30 K to investigate the effect of the initial CH and MH on the levitation performance of MgB\(_{2}\). For temperatures below 30 K, it was observed that \(F_{z}\) increases with increasing CH. However, a minute variation in \(F_{z}\) and a big hysteresis loop are observed at 30 K. From the lateral traverses, it was obtained that the \(F_{z}\) with attractive character increases with decreasing MH and the hysteresis effect increases for small MHs due to the increment of the magnetic field intensity which the sample feels with decreasing MH. In addition, it was seen that the character of \(F_{x}\) varies depending on both MH and measurement temperature. The higher hysteresis obtained in \(F_{x}\) than in \(F_{z}\) during lateral traverses implies that the motion of the flux lines in MgB\(_{2}\) is especially in lateral rather than vertical direction. Finally in this study, it was shown that the levitation performance of MgB\(_{2}\) depends not only on the measurement temperature but also on the CH and MH conditions. These results can be useful for optimizing the levitation performance of MgB\(_{2}\) superconductors for potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Gawalek, T. Habisreuther, T. Strasser, M. Wu, D. Litzkendorf, K. Fischer, P. Gornert, A. Gladum, P. Stoye, P. Verges, K.V. Ilushin, L.K. Kovalev, Appl. Supercond. 2, 465 (1994)

    Article  Google Scholar 

  2. W. Yao, J. Bascuñán, W.S. Kim, S. Hahn, H. Lee, Y. Iwasa, IEEE Trans. Appl. Supercond. 18, 912 (2008)

    Article  ADS  Google Scholar 

  3. J.R. Hull, E.F. Hilton, T.M. Mulcahy, Z.J. Yang, A. Lockwood, M. Strasik, J. Appl. Phys. 78, 6833 (1995)

    Article  ADS  Google Scholar 

  4. A. Patel, R. Palka, B.A. Glowacki, Supercond. Sci. Technol. 24, 015009 (2011)

    Article  ADS  Google Scholar 

  5. A. Patel, G. Giunchi, F. Albisetti, Y. Shi, S.C. Hopkins, R. Palka, D.A. Cardwell, B.A. Glowacki, Phys. Procedia 36, 937 (2012)

    Article  ADS  Google Scholar 

  6. Z. Wen, Y. Liu, W. Yang, M. Qiu, J. Phys. D 40, 7281 (2007)

    Article  ADS  Google Scholar 

  7. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)

    Article  ADS  Google Scholar 

  8. C. Fischer, C. Rodig, W. Häßler, O. Perner, J. Eckert, K. Nenkov, G. Fuchs, H. Wendrock, B. Holzapfel, L. Schultz, Appl. Phys. Lett. 83, 1803 (2003)

    Article  ADS  Google Scholar 

  9. E. Yanmaz, B. Savaskan, M. Basoglu, E. Taylan, Koparan, N.R. Dilley, C.R.M. Grovenor, J. Alloys Compd. 480, 203 (2009)

    Article  Google Scholar 

  10. K. Shinohara, T. Futatsumori, H. Ikeda, Phys. C 468, 1369 (2008)

    Article  ADS  Google Scholar 

  11. N. Varghese, K. Vinod, A. Rao, Y.K. Kuo, U. Syamaprasad, J. Alloys Compd. 470, 63 (2009)

    Article  Google Scholar 

  12. J.R. Hull, T.M. Mulcahy, K.L. Uherka, R.A. Erck, R.G. Abboud, Appl. Supercond. 2, 449 (1994)

    Article  Google Scholar 

  13. A. Gümbel, J. Eckert, G. Fuchs, K. Nenkov, K.H. Müller, L. Schultz, Appl. Phys. Lett. 80, 2725 (2002)

    Article  ADS  Google Scholar 

  14. P.C. Canfield, S.L. Budko, D.K. Finnemore, Phys. C 385, 1 (2003)

    Article  ADS  Google Scholar 

  15. A. Handstein, D. Hinz, G. Fuchs, K.H. Muller, K. Nenkov, O. Gutfleisch, V.N. Narozhnyi, L. Schultz, J. Alloys Compd. 329, 285 (2001)

    Article  Google Scholar 

  16. X.L. Wang, S. Soltanian, M. James, M.J. Qin, J. Horvat, Q.W. Yao, H.K. Liu, S.X. Dou, Phys. C 408–410, 63 (2004)

    Article  Google Scholar 

  17. E. Yanmaz, K. Ozturk, C.E.J. Dancer, M. Basoglu, S. Celik, C.R.M. Grovenor, J. Alloys Compd. 492, 48 (2010)

    Article  Google Scholar 

  18. E. Perini, G. Giunchi, M. Geri, A. Morandi, IEEE Trans. Appl. Supercond. 19, 2124 (2009)

    Article  ADS  Google Scholar 

  19. Y.H. Zhou, X.Y. Zhang, J. Zhou, J. Appl. Phys. 103, 123901 (2008)

    Article  ADS  Google Scholar 

  20. E. Perini, G. Giunchi, Supercond. Sci. Technol. 22, 045021 (2009)

    Article  ADS  Google Scholar 

  21. C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)

    Article  ADS  MATH  Google Scholar 

  22. J.R. Hull, A. Cansiz, J. Appl. Phys. 86, 6396 (1999)

    Article  ADS  Google Scholar 

  23. M. Murakami, T. Oyama, H. Fujimoto, S. Gotoh, K. Yamaguchi, Y. Shiohara, N. Koshizuoka, S. Tanaka, IEEE Trans. Magn. 27, 1479 (1991)

    Article  ADS  Google Scholar 

  24. F.C. Moon, M.M. Yanoviak, R. Ware, Appl. Phys. Lett. 52, 1534 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Measurements of magnetic forces were carried out by using “Magnetic Levitation Force Measurement System (MLFMS)” whose patent application number for Turkish Patent Institute is 2013/13638 and this system was developed by a TUBITAK (The Scientific and Technological Research Council of Turkey) project with contract number \(110T622\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Erdem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, O., Ozturk, K., Guner, S.B. et al. Effects of Initial Cooling Conditions and Measurement Heights on the Levitation Performance of Bulk MgB\(_{2}\) Superconductor at Different Measurement Temperatures. J Low Temp Phys 177, 28–39 (2014). https://doi.org/10.1007/s10909-014-1183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1183-8

Keywords

Navigation