Skip to main content
Log in

Phase Diagram of a \(^6Li\)\(^{40}K\) Mixture in a Square Lattice

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We calculate the mean-field phase diagram for an attractive interacting Fermi mixture of Lithium-6 (\(^6Li\)) and Potassium-40 (\(^{40}K\)) atoms in a two-dimensional optical lattice at finite temperatures. The polarization versus temperature diagrams show that there are three phases: the Sarma phase (in which the condensed pairs have zero net momentum), the Fulde–Ferrell (FF) phase (in which the pairs have non-zero net momentum), and the normal phase (in which the Helmholtz free energy is minimized for gapless phase). The zero polarization line is the conventional Bardeen–Cooper–Schrieffer state. The phase diagram contains a Lifshitz point. When the interaction strength is increased, the Lifshitz point moves toward the higher temperatures and larger polarizations. Moreover, contrary to the phase diagram of population-imbalanced \(^6Li\) Fermi gas, where the phase separation appears for low polarizations, we found the existence of a polarization window for the FF phase. This means that as soon as the system is polarized it goes into the FF phase if the temperature is low enough. This polarization window is larger for a majority of \(^{40}K\) atoms compared to the majority of \(^6Li\) atoms. We also find that the largest polarization that the system can support before it becomes a normal fluid is larger for majority of \(^6Li\) atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P.F. Bedaque, H. Caldas, G. Rupak, Phys. Rev. Lett. 91, 247002 (2003)

    Article  ADS  Google Scholar 

  2. C.H. Pao, S.-T. Wu, S.K. Yip, Phys. Rev. B 73, 132506 (2006)

    Article  ADS  Google Scholar 

  3. D.E. Sheehy, L. Radzihovsky, Phys. Rev. Lett. 96, 060401 (2006)

    Article  ADS  Google Scholar 

  4. M.W. Zwierlein et al., Science 311, 492 (2006)

    Article  ADS  Google Scholar 

  5. G.B. Partridge et al., Science 311, 503 (2006)

    Article  ADS  Google Scholar 

  6. Y. Shin et al., Nature (London) 451, 689 (2008)

    Article  ADS  Google Scholar 

  7. P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)

    Article  ADS  Google Scholar 

  8. A.I. Larkin, Y.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964). [Sov. Phys. JETP 20, 762 (1965)]

    Google Scholar 

  9. P. Pieri, D. Neilson, G.C. Strinati, Phys. Rev. B 75, 113301 (2007)

    Article  ADS  Google Scholar 

  10. T. Hakioglu, M. Sahin, Phys. Rev. Lett. 98, 166405 (2007)

    Article  ADS  Google Scholar 

  11. Y. Matsuda, H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007)

    Article  ADS  Google Scholar 

  12. T. Zhou, C.S. Ting, Phys. Rev. B 80, 224515 (2009)

    Article  ADS  Google Scholar 

  13. X.-J. Zuo, C.-D. Gong, Eur. Phys. Lett. 86, 47004 (2009)

    Article  ADS  Google Scholar 

  14. H. Shimahara, Phys. Rev. B 80, 214512 (2009)

    Article  ADS  Google Scholar 

  15. A. Romano et al., Phys. Rev. B 81, 064513 (2010)

    Article  ADS  Google Scholar 

  16. R. Ikeda, Phys. Rev. B 81, 060510(R) (2010)

    Article  ADS  Google Scholar 

  17. M.M. Maska et al., Phys. Rev. B 82, 054509 (2010)

    Article  ADS  Google Scholar 

  18. Y. He et al., Phys. Rev. A 75, 021602(R) (2007)

    Article  ADS  Google Scholar 

  19. T. Koponen et al., New J. Phys. 8, 179 (2006)

    Article  ADS  Google Scholar 

  20. L. He, M. Jin, P. Zhuang, Phys. Rev. B 74, 024516 (2006)

    Article  ADS  Google Scholar 

  21. T.K. Koponen et al., Phys. Rev. A 73, 033620 (2006)

    Article  ADS  Google Scholar 

  22. T.K. Koponen et al., Phys. Rev. Lett. 99, 120403 (2007)

    Article  ADS  Google Scholar 

  23. T.-L. Dao, A. Georges, M. Capone, Phys. Rev. B 76, 104517 (2007)

    Article  ADS  Google Scholar 

  24. Q. Chen et al., Phys. Rev. B 75, 014521 (2007)

    Article  ADS  Google Scholar 

  25. X.-J. Liu, H. Hu, P.D. Drummond, Phys. Rev. A 76, 043605 (2007)

    Article  ADS  Google Scholar 

  26. D.E. Sheehy, L. Radzihovsky, Ann. Phys. (N.Y.) 322, 1790 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. T. Paananen et al., Phys. Rev. A 77, 053602 (2008)

    Article  ADS  Google Scholar 

  28. M. Rizzi et al., Phys. Rev. B 77, 245105 (2008)

    Article  ADS  Google Scholar 

  29. X.-J. Liu, H. Hu, P.D. Drummond, Phys. Rev. A 78, 023601 (2008)

    Article  ADS  Google Scholar 

  30. M.R. Bakhtiari, M.J. Leskinen, P. Törmä, Phys. Rev. Lett. 101, 120404 (2008)

    Article  ADS  Google Scholar 

  31. M. Iskin, C.A.R. Sá de Melo, Phys. Rev. A 78, 013607 (2008)

    Article  ADS  Google Scholar 

  32. A. Lazarides, B. Van Schaeybroeck, Phys. Rev. A 77, 041602 (2008)

    Article  ADS  Google Scholar 

  33. B. Gubbels, H.T.C. Stoof, Phys. Rev. Lett. 100, 140407 (2008)

    Article  ADS  Google Scholar 

  34. T. Paananen, J. Phys. B: At. Mol. Opt. Phys. 42, 165304 (2009)

    Article  ADS  Google Scholar 

  35. X. Cui, Y. Wang, Phys. Rev. B 79, 180509(R) (2009)

    Article  ADS  Google Scholar 

  36. A. Mishra, H. Mishra, Eur. Phys. J. D 53, 75 (2009)

    Article  ADS  Google Scholar 

  37. B. Wang, H.-D. Chen, S. Das Sarma, Phys. Rev. A 79, 051604(R) (2009)

    Article  ADS  Google Scholar 

  38. Y. Yanase, Phys. Rev. B 80, 220510(R) (2009)

    Article  ADS  Google Scholar 

  39. A. Ptok, M. Máska, M. Mierzejewski, J. Phys.: Condens. Matter 21, 295601 (2009)

    Google Scholar 

  40. Y. Chen et al., Phys. Rev. B 79, 054512 (2009)

    Article  ADS  Google Scholar 

  41. J.M. Edge, N.R. Cooper, Phys. Rev. Lett. 103, 065301 (2009)

    Article  ADS  Google Scholar 

  42. K.B. Gubbels, J.E. Baarsma, H.T.C. Stoof, Phys. Rev. Lett. 103, 195301 (2009)

    Article  ADS  Google Scholar 

  43. Y.L. Loh, N. Trivedi, Phys. Rev. Lett. 104, 165302 (2010)

    Article  ADS  Google Scholar 

  44. F. Heidrich-Meisner et al., Phys. Rev. A 81, 023629 (2010)

    Article  ADS  Google Scholar 

  45. S.K. Baur, J. Shumway, E.J. Mueller, Phys. Rev. A 81, 033628 (2010)

    Article  ADS  Google Scholar 

  46. A. Korolyuk, F. Massel, P. Törmä, Phys. Rev. Lett. 104, 236402 (2010)

    Article  ADS  Google Scholar 

  47. M.J. Wolak et al., Phys. Rev. A 82, 013614 (2010)

    Article  ADS  Google Scholar 

  48. L. Radzihovsky, D. Sheehy, Rep. Prog. Phys. 73, 076501 (2010)

    Article  ADS  Google Scholar 

  49. J.M. Edge, N.R. Cooper, Phys. Rev. A 81, 063606 (2010)

    Article  ADS  Google Scholar 

  50. Xiaoling Cui, Yupeng Wang, Phys. Rev. A 81, 023618 (2010)

    Article  ADS  Google Scholar 

  51. J.E. Baarsma, K.B. Gubbels, H.T.C. Stoof, Phys. Rev. A 82, 013624 (2010)

    Article  ADS  Google Scholar 

  52. Z.G. Koinov, R. Mendoza, M. Fortes, Phys. Rev. Lett. 106, 100402 (2011)

    Article  ADS  Google Scholar 

  53. M.O.J. Heikkinen, P. Törmä, Phys. Rev. A 83, 053630 (2011)

    Article  ADS  Google Scholar 

  54. K. Sun, C.J. Bolech, Phys. Rev. A 85, 051607(R) (2012)

    Article  ADS  Google Scholar 

  55. T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 86, 043622 (2012)

    Article  ADS  Google Scholar 

  56. V.V. Fran ça, D. Hörndlein, A. Buchleitner, Phys. Rev. A 86, 033622 (2012)

    Google Scholar 

  57. M.A. Resende et al., Phys. Rev. A 86, 033603 (2012)

    Article  ADS  Google Scholar 

  58. M.J. Wolak et al., Phys. Rev. A 86, 023630 (2012)

    Article  ADS  Google Scholar 

  59. R. Mendoza et al., Phys. Rev. A 88, 033606 (2013)

    Article  ADS  Google Scholar 

  60. S. Chiesa, Sh Zhang, Phys. Rev. A 88, 043624 (2013)

    Article  ADS  Google Scholar 

  61. R. Liao, F. Popescu, Kh Quader, Phys. Rev. B 88, 134507 (2013)

    Article  ADS  Google Scholar 

  62. M.O.J. Heikkinen, Dong-Hee Kim, P. Törmä, Phys. Rev. B 87, 224519 (2013)

    Article  ADS  Google Scholar 

  63. J.E. Baarsma, H.T.C. Stoof, Phys. Rev. A 87, 063612 (2013)

    Article  ADS  Google Scholar 

  64. Jibiao Wang, Hao Guo, Qijin Chen, Phys. Rev. A 87, 041601(R) (2013)

    Article  ADS  Google Scholar 

  65. C.-Y. Lai, C. Shi, S.-W. Tsai, Phys. Rev. B 87, 075134 (2013)

    Google Scholar 

  66. A. Sedrakian, D.H. Rischke, Phys. Rev. D 80, 074022 (2009)

    Article  ADS  Google Scholar 

  67. R. Casalbuoni, G. Nardulli, Rev. Mod. Phys. 76, 263 (2004)

    Article  ADS  Google Scholar 

  68. G. Sarma, J. Phys. Chem. 24, 1029 (1963)

    Google Scholar 

  69. W. Zwerger, J. Opt. B 5, S9 (2003)

    Article  ADS  Google Scholar 

  70. W. Vincent Liu, F. Wilczek, Phys. Rev. Lett. 90, 047002 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Koinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahl, S., Koinov, Z. Phase Diagram of a \(^6Li\)\(^{40}K\) Mixture in a Square Lattice. J Low Temp Phys 176, 113–121 (2014). https://doi.org/10.1007/s10909-014-1166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1166-9

Keywords

Navigation