Skip to main content

Advertisement

Log in

Measurements on Melting Pressure, Metastable Solid Phases, and Molar Volume of Univariant Saturated Helium Mixture

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A concentration-saturated helium mixture at the melting pressure consists of two liquid phases and one or two solid phases. The equilibrium system is univariant, whose properties depend uniquely on temperature. Four coexisting phases can exist on singular points, which are called quadruple points. As a univariant system, the melting pressure could be used as a thermometric standard. It would provide some advantages compared to the current reference, namely pure \(^3\)He, especially at the lowest temperatures below 1 mK. We have extended the melting pressure measurements of the concentration-saturated helium mixture from 10 to 460 mK. The density of the dilute liquid phase was also recorded. The effect of the equilibrium crystal structure changing from hcp to bcc was clearly seen at \(T=294\) mK at the melting pressure \(P=2.638\) MPa. We observed the existence of metastable solid phases around this point. No evidence was found for the presence of another, disputed, quadruple point at around 400 mK. The experimental results agree well with our previous calculations at low temperatures, but deviate above 200 mK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Rusby, M. Durieux, A. Reesink, R. Hudson, G. Schuster, M. Kühne, W. Fogle, R. Soulen, E. Adams, J. Low Temp. Phys. 126, 633 (2002)

    Article  ADS  Google Scholar 

  2. A. Sebedash, J.T. Tuoriniemi, S. Boldarev, E.M. Pentti, A.J. Salmela, AIP Conf. Proc. 850, 1591 (2006)

    Article  ADS  Google Scholar 

  3. A. Sebedash, J. Tuoriniemi, E. Pentti, A. Salmela, J. Phys. Conf. Ser. 150, 012043 (2009)

    Article  ADS  Google Scholar 

  4. J. Tuoriniemi, J. Martikainen, E. Pentti, A. Sebedash, S. Boldarev, G. Pickett, J. Low Temp. Phys. 129, 531 (2002)

    Article  ADS  Google Scholar 

  5. D.O. Edwards, S. Balibar, Phys. Rev. B 39, 4083 (1989)

    Article  ADS  Google Scholar 

  6. A. Salmela, A. Sebedash, J. Rysti, E. Pentti, J. Tuoriniemi, Phys. Rev. B 83, 134510 (2011)

    Article  ADS  Google Scholar 

  7. E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, Phys. Rev. B 78, 064509 (2008)

    Article  ADS  Google Scholar 

  8. E. Pentti, J. Tuoriniemi, A. Salmela, A. Sebedash, J. Low Temp. Phys. 146, 71 (2007)

    Article  ADS  Google Scholar 

  9. W. Yao, T.A. Knuuttila, K.K. Nummila, J.E. Martikainen, A.S. Oja, O.V. Lounasmaa, J. Low Temp. Phys. 120, 121 (2000)

    Article  ADS  Google Scholar 

  10. M.S. Manninen, J.-P. Kaikkonen, V. Peri, J. Rysti, I. Todoshchenko, and J. Tuoriniemi, J. Low Temp. Phys. 175, 56 (2014)

    Google Scholar 

  11. E.R. Grilly, J. Low Temp. Phys. 11, 33 (1973)

    Article  ADS  Google Scholar 

  12. G.E. Watson, J.D. Reppy, R.C. Richardson, Phys. Rev. 188, 384 (1969)

    Article  ADS  Google Scholar 

  13. E. Tanaka, K. Hatakeyama, S. Noma, T. Satoh, Cryogenics 40, 365 (2000)

    Article  ADS  Google Scholar 

  14. E.C. Kerr, R.H. Sherman, J. Low Temp. Phys. 3, 451 (1970)

    Article  ADS  Google Scholar 

  15. D.S. Greywall, Phys. Rev. B 27, 2747 (1983)

    Article  ADS  Google Scholar 

  16. D.S. Greywall, Phys. Rev. B 33, 7520 (1986)

    Article  ADS  Google Scholar 

  17. B.M. Abraham, D.W. Osborne, J. Low Temp. Phys. 5, 335 (1971)

    Article  ADS  Google Scholar 

  18. Magnicon MFFT-1 Noise Thermometer

  19. H. Preston-Thomas, Metrologia 27, 3 (1990)

    Article  ADS  Google Scholar 

  20. J. Rysti, J. Tuoriniemi, A. Salmela, A. Sebedash, J. Phys. Conf. Ser. 400, 012065 (2012)

    Article  ADS  Google Scholar 

  21. J. Rysti, J. Tuoriniemi, A. Salmela, Phys. Rev. B 85, 134529 (2012)

    Article  ADS  Google Scholar 

  22. V.N. Lopatik, JETP 59, 284 (1984)

    Google Scholar 

  23. B. van den Brandt, W. Griffioen, G. Frossati, H. van Beelen, R. de Bruyn Ouboter, Physica 114B, 295 (1982)

    Google Scholar 

  24. P.M. Tedrow, D.M. Lee, Phys. Rev. 181, 399 (1969)

    Article  ADS  Google Scholar 

  25. V.L. Vvedenskii, JETP Lett. 24, 133 (1976)

    ADS  Google Scholar 

  26. B.M. Abraham, O.G. Brandt, Y. Eckstein, J. Munarin, G. Baym, Phys. Rev. 188, 309 (1969)

    Article  ADS  Google Scholar 

  27. K. Hatakeyama, S. Noma, E. Tanaka, S.N. Burmistrov, T. Satoh, Phys. Rev. B 67, 094503 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the EU 7th Framework Programme (FP7/2007-2013, Grant No. 228464 Microkelvin) and by the Academy of Finland through its LTQ CoE grant (Project No. 250280). We also acknowledge the National Doctoral Programme in Materials Physics for financial support. We thank A. Sebedash and I. Todoshchenko for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rysti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rysti, J., Manninen, M.S. & Tuoriniemi, J. Measurements on Melting Pressure, Metastable Solid Phases, and Molar Volume of Univariant Saturated Helium Mixture. J Low Temp Phys 175, 739–754 (2014). https://doi.org/10.1007/s10909-014-1154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1154-0

Keywords

Navigation