Skip to main content

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters

Abstract

We have realized a frequency-domain multiplexing technique for the readout of large metallic magnetic calorimeter detector arrays. It is based on non-hysteretic single-junction SQUIDs and allows for a simultaneous readout of hundreds or thousands of detectors by using a single cryogenic high electron mobility transistor amplifier and two coaxial cables that are routed from room-temperature to the detector array. We discuss the working principle of the multiplexer and present details about our prototype multiplexer design. We show that fabricated devices are fully operational and that characteristic SQUID parameters such as the input sensitivity of the SQUID or the resonance frequency of the readout circuit can be predicted with confidence. Our best device so far has shown a magnetic flux white noise level of 1.4 m\({\Phi _0}/\sqrt{Hz}\) which can in future be reduced by an optimization of the fabrication processes as well as an improved microwave readout system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A. Fleischmann, C. Enss, G.M. Seidel, in Cryogenic Particle Detection, ed. by C. Enss, Topics in Applied Physics, vol 99 (Springer, Berlin, 2005)

  2. K.D. Irwin, G.C. Hilton, in Cryogenic Particle Detection, ed. by C. Enss, Topics in Applied Physics, vol 99 (Springer, Berlin, 2005).

  3. D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, T. Schurig, IEEE Trans. Appl. Supercond. 17, 699–704 (2007)

    Article  ADS  Google Scholar 

  4. A. Fleischmann et al., to be published.

  5. H. Rotzinger, J. Adams, S.R. Bandler, J. Beyer, H. Eguchi, E. Figueroa-Feliciano, W. Hsieh, G.M. Seidel, T. Stevenson, J. Low Temp. Phys. 151, 351–356 (2008)

    Article  ADS  Google Scholar 

  6. A. Fleischmann, L. Gastaldo, S. Kempf, A. Kirsch, A. Pabinger, C. Pies, J.-P. Porst, P. Ranitzsch, S. Schäfer, F.V. Seggern, T. Wolf, C. Enss, G.M. Seidel, AIP Conf. Proc. 1185, 571–578 (2009)

    Article  ADS  Google Scholar 

  7. K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107–2109 (2004)

    Article  ADS  Google Scholar 

  8. J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92, 023514 (2008)

    Article  ADS  Google Scholar 

  9. P.K. Hansma, J. Appl. Phys. 44, 4191–4194 (1973)

    Article  ADS  Google Scholar 

  10. O. Noroozian, P.K. Day, B.H. Eom, H.G. LeDuc, J. Zmuidzinas, IEEE Trans. Appl. Supercond. 60, 1235–1243 (2012)

    Google Scholar 

  11. S.J.C. Yates, A.M. Baryshev, J.J.A. Baselmans, B. Klein, R. Gsten, Appl. Phys. Lett. 95, 042504 (2009)

    Article  ADS  Google Scholar 

  12. S. McHugh, B.A. Mazin, B. Serfass, S. Meeker, K. OBrien, R. Duan, R. Raffanti, D. Werthimer, Rev. Sci. Instr. 83, 044702 (2012)

    Article  ADS  Google Scholar 

  13. I. Siddiqi, R. Vijay, F. Pierre, C.M. Wilson, L. Frunzio, M. Metcalfe, C. Rigetti, R.J. Schoelkopf, M.H. Devoret, D. Vion, D. Esteve, Phys. Rev. Lett. 94, 27005 (2005)

    Article  ADS  Google Scholar 

  14. S. Kempf, M. Wegner, L. Gastaldo, A. Fleischmann, C. Enss, J. Low Temp. Phys. Special Issue LTD15, (2014). doi:10.1007/s10909-013-1041-0(2014)

  15. J.A.B. Mates, K.D. Irwin, L.R. Vale, G.C. Hilton, J. Gao, K.W. Lehnert, J. Low Temp. Phys. 167, 707–712 (2012)

    Article  ADS  Google Scholar 

  16. S. Kempf, A. Ferring, A. Fleischmann, L. Gastaldo, C. Enss, Supercond. Sci. Technol. 26, 065012 (2013)

    Article  ADS  Google Scholar 

  17. J.A.B. Mates, PhD thesis, University of Colorado, Colorado, USA, 2011

  18. S. Kempf, PhD thesis, Heidelberg University, Germany, 2012

Download references

Acknowledgments

We are deeply grateful to J. Beyer, G. C. Hilton, J. A. B. Mates, L. R. Vale, and K. D. Irwin for many valuable discussions. We also would like to thank T. Wolf for technical support during device fabrication. This work was supported by the BMBF Grant 06 HD 9118I, the GSI R&D grant HDEnss, and the European Community Research Infrastructures under the FP7 Capacities Specific Programme, MICROKELVIN Project Number 228464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kempf.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kempf, S., Gastaldo, L., Fleischmann, A. et al. Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters. J Low Temp Phys 175, 850–860 (2014). https://doi.org/10.1007/s10909-014-1153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1153-1

Keywords

  • Microwave SQUID based MMC multiplexer
  • Metallic magnetic calorimeters
  • Frequency-domain multiplexing
  • Non-hysteretic single-junction SQUIDs
  • SQUID characterization