Journal of Low Temperature Physics

, Volume 175, Issue 5–6, pp 850–860 | Cite as

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters

  • S. Kempf
  • L. Gastaldo
  • A. Fleischmann
  • C. Enss


We have realized a frequency-domain multiplexing technique for the readout of large metallic magnetic calorimeter detector arrays. It is based on non-hysteretic single-junction SQUIDs and allows for a simultaneous readout of hundreds or thousands of detectors by using a single cryogenic high electron mobility transistor amplifier and two coaxial cables that are routed from room-temperature to the detector array. We discuss the working principle of the multiplexer and present details about our prototype multiplexer design. We show that fabricated devices are fully operational and that characteristic SQUID parameters such as the input sensitivity of the SQUID or the resonance frequency of the readout circuit can be predicted with confidence. Our best device so far has shown a magnetic flux white noise level of 1.4 m\({\Phi _0}/\sqrt{Hz}\) which can in future be reduced by an optimization of the fabrication processes as well as an improved microwave readout system.


Microwave SQUID based MMC multiplexer Metallic magnetic calorimeters Frequency-domain multiplexing Non-hysteretic single-junction SQUIDs SQUID characterization 



We are deeply grateful to J. Beyer, G. C. Hilton, J. A. B. Mates, L. R. Vale, and K. D. Irwin for many valuable discussions. We also would like to thank T. Wolf for technical support during device fabrication. This work was supported by the BMBF Grant 06 HD 9118I, the GSI R&D grant HDEnss, and the European Community Research Infrastructures under the FP7 Capacities Specific Programme, MICROKELVIN Project Number 228464.


  1. 1.
    A. Fleischmann, C. Enss, G.M. Seidel, in Cryogenic Particle Detection, ed. by C. Enss, Topics in Applied Physics, vol 99 (Springer, Berlin, 2005)Google Scholar
  2. 2.
    K.D. Irwin, G.C. Hilton, in Cryogenic Particle Detection, ed. by C. Enss, Topics in Applied Physics, vol 99 (Springer, Berlin, 2005).Google Scholar
  3. 3.
    D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, T. Schurig, IEEE Trans. Appl. Supercond. 17, 699–704 (2007)CrossRefADSGoogle Scholar
  4. 4.
    A. Fleischmann et al., to be published.Google Scholar
  5. 5.
    H. Rotzinger, J. Adams, S.R. Bandler, J. Beyer, H. Eguchi, E. Figueroa-Feliciano, W. Hsieh, G.M. Seidel, T. Stevenson, J. Low Temp. Phys. 151, 351–356 (2008)CrossRefADSGoogle Scholar
  6. 6.
    A. Fleischmann, L. Gastaldo, S. Kempf, A. Kirsch, A. Pabinger, C. Pies, J.-P. Porst, P. Ranitzsch, S. Schäfer, F.V. Seggern, T. Wolf, C. Enss, G.M. Seidel, AIP Conf. Proc. 1185, 571–578 (2009)CrossRefADSGoogle Scholar
  7. 7.
    K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107–2109 (2004)CrossRefADSGoogle Scholar
  8. 8.
    J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92, 023514 (2008)CrossRefADSGoogle Scholar
  9. 9.
    P.K. Hansma, J. Appl. Phys. 44, 4191–4194 (1973)CrossRefADSGoogle Scholar
  10. 10.
    O. Noroozian, P.K. Day, B.H. Eom, H.G. LeDuc, J. Zmuidzinas, IEEE Trans. Appl. Supercond. 60, 1235–1243 (2012)Google Scholar
  11. 11.
    S.J.C. Yates, A.M. Baryshev, J.J.A. Baselmans, B. Klein, R. Gsten, Appl. Phys. Lett. 95, 042504 (2009)CrossRefADSGoogle Scholar
  12. 12.
    S. McHugh, B.A. Mazin, B. Serfass, S. Meeker, K. OBrien, R. Duan, R. Raffanti, D. Werthimer, Rev. Sci. Instr. 83, 044702 (2012)CrossRefADSGoogle Scholar
  13. 13.
    I. Siddiqi, R. Vijay, F. Pierre, C.M. Wilson, L. Frunzio, M. Metcalfe, C. Rigetti, R.J. Schoelkopf, M.H. Devoret, D. Vion, D. Esteve, Phys. Rev. Lett. 94, 27005 (2005)CrossRefADSGoogle Scholar
  14. 14.
    S. Kempf, M. Wegner, L. Gastaldo, A. Fleischmann, C. Enss, J. Low Temp. Phys. Special Issue LTD15, (2014). doi: 10.1007/s10909-013-1041-0(2014)
  15. 15.
    J.A.B. Mates, K.D. Irwin, L.R. Vale, G.C. Hilton, J. Gao, K.W. Lehnert, J. Low Temp. Phys. 167, 707–712 (2012)CrossRefADSGoogle Scholar
  16. 16.
    S. Kempf, A. Ferring, A. Fleischmann, L. Gastaldo, C. Enss, Supercond. Sci. Technol. 26, 065012 (2013)CrossRefADSGoogle Scholar
  17. 17.
    J.A.B. Mates, PhD thesis, University of Colorado, Colorado, USA, 2011Google Scholar
  18. 18.
    S. Kempf, PhD thesis, Heidelberg University, Germany, 2012Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Kempf
    • 1
  • L. Gastaldo
    • 1
  • A. Fleischmann
    • 1
  • C. Enss
    • 1
  1. 1.Kirchhoff-Institute for PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations