Skip to main content
Log in

Boundary Tension at the Interface of Nanoscopic Helium Films on an Heterogeneous Substrate

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This paper reports the first calculation of the two-dimensional interfacial profile and energetics of nanoscopically thin films of helium, on an heterogeneous planar substrate consisting of two adjoining metals. The calculations are performed in the frame of density functional theory at zero temperature, with the purpose of identifying the formation process of the interface at the boundary between the two substrates when few atomic layers are involved, to elucidate the possible relationship of the magnitude of the boundary tension with the displacement of layers between the half films, and to extract keys to organize future calculations of film coexistence at finite temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In fact, FRDF theory is unable to match the prewetting temperature \(T_{PW}\) at the expected experimental figure of \(\approx \)2.5 K, due to the limitations of mean field theory in accounting for critical phenomena.

References

  1. P. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Article  ADS  Google Scholar 

  2. D. Bonn, D. Ross, Rep. Prog. Phys. 64, 1085 (2001)

    Article  ADS  Google Scholar 

  3. B.M. Law, Prog. Surf. Sci. 66, 159 (2001)

    Article  ADS  Google Scholar 

  4. J.W. Cahn, J. Chem. Phys. 66, 3667 (1977)

    Article  ADS  Google Scholar 

  5. C. Ebner, W.F. Saam, Phys. Rev. Lett. 38, 1486 (1977)

    Article  ADS  Google Scholar 

  6. B. Widom, A.S. Clarke, Phys. A 168, 149 (1990)

    Article  MathSciNet  Google Scholar 

  7. J. W. Gibbs, The Scientific Papers of J. W. Gibbs, vol 1, p. 288, Dover, N. Y., 1961.

  8. J.O. Indekeu, Physica A 183, 439 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. E.M. Blokhuis, Physica A 202, 402 (1994)

    Article  ADS  Google Scholar 

  10. J.O. Indekeu, Int. J. Mod. Phys. B 8, 309 (1994)

    Article  ADS  Google Scholar 

  11. J.Y. Wang, S. Betelu, B.M. Law, Phys. Rev. E 63, 031601 (2001)

    Article  ADS  Google Scholar 

  12. A. Amirfazli, A.W. Neumann, Adv. Colloid Interface Sci. 110, 121 (2004)

    Article  Google Scholar 

  13. P. Lenz, R. Lipowsky, Phys. Rev. Lett. 80, 1920 (1998)

    Article  ADS  Google Scholar 

  14. C. Bauer, S. Dietrich, Phys. Rev. E 60, 69129 (1999)

    Article  Google Scholar 

  15. K. Kargupta, A. Sharma, Phys. Rev. Lett. 86, 4536 (2001)

    Article  ADS  Google Scholar 

  16. P. Lenz, C. Bechinger, C. Schäfle, P. Leiderer, R. Lipowsky, Langmuir 2001, 17 (2001)

    Google Scholar 

  17. M.W. Cole, E. Vittorators, J. Low Temp. Phys. 22, 223 (1976)

    Article  ADS  Google Scholar 

  18. R. Evans, Adv. Phys. 28, 143 (1979)

    Article  ADS  Google Scholar 

  19. W. Koch, S. Dietrich, M. Napiórkowski, Phys. Rev. E 51, 3300 (1995)

    Article  ADS  Google Scholar 

  20. T. Getta, S. Dietrich, Phys. Rev. E 57, 655 (1998)

    Article  ADS  Google Scholar 

  21. C. Bauer, S. Dietrich, Eur. Phys. J B 10, 767 (1999)

    Article  ADS  Google Scholar 

  22. F. Ancilotto, F. Faccin, F. Toigo, Phys. Rev. B 62, 17035 (2000)

    Article  ADS  Google Scholar 

  23. F. Ancilotto, M. Barranco, E.S. Hernández, A. Hernando, M. Pi, Phys. Rev. B 79, 104514 (2009)

    Article  ADS  Google Scholar 

  24. M. Barranco, M. Guilleumas, E.S. Hernández, R. Mayol, M. Pi, L. Szybisz, Phys. Rev. B 68, 024515 (2003)

    Article  ADS  Google Scholar 

  25. F. Ancilotto, M. Barranco, E.S. Hernández, M. Pi, J. Low Temp. Phys. 157, 174 (2009)

    Article  ADS  Google Scholar 

  26. A. Chizmeshya, M.W. Cole, E. Zaremba, J. Low Temp. Phys. 110, 677 (1998)

    Article  ADS  Google Scholar 

  27. M. Pi, private communication.

Download references

Acknowledgments

The author is thankful to F. Ancilotto, M. Barranco and M. Pi for interesting conversations and for many valuable computational hints, and to M. Cole for critical comments. This work was performed with partial support from Grants PIP 0546 from CONICET, UBACYT 01/K156 from University of Buenos Aires and PICT 2011/1217 from ANPCYT, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, E.S. Boundary Tension at the Interface of Nanoscopic Helium Films on an Heterogeneous Substrate. J Low Temp Phys 176, 82–92 (2014). https://doi.org/10.1007/s10909-014-1143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1143-3

Keywords

PACS

Navigation