Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 767–772 | Cite as

The Tomographic Ionized-Carbon Mapping Experiment (TIME) CII Imaging Spectrometer

  • Z. StaniszewskiEmail author
  • J. J. Bock
  • C. M. Bradford
  • J. Brevik
  • A. Cooray
  • Y. Gong
  • S. Hailey-Dunsheath
  • R. O’Brient
  • M. Santos
  • E. Shirokoff
  • M. Silva
  • M. Zemcov
Article

Abstract

The Tomographic Ionized-Carbon Mapping Experiment (TIME) and TIME-Pilot are proposed imaging spectrometers to measure reionization and large scale structure at redshifts 5–9. We seek to exploit the 158  \({\upmu } \mathrm{m}\) restframe emission of [CII], which becomes measurable at 200–300  GHz at reionization redshifts. Here we describe the scientific motivation, give an overview of the proposed instrument, and highlight key technological developments underway to enable these measurements.

Keywords

Spectrometer Reionization Intensity Mapping TES KID 

Notes

Acknowledgments

We would like to thank the Keck Institute for Space Studies at Caltech and JPL for support of this concept study. Funding for R. O’Brient provided by the NASA Postdoctoral Program.

References

  1. 1.
    G.D. Becker, W.L.W. Sargent, M. Rauch et al., Astrophys. J. 735, 93 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    D.N. Spergel, R. Bean, O. Doré et al., Astrophys. J. Suppl. 170, 377–408 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    V. Bromm, R.B. Larson, Annu. Rev. Astron. Astrophys. 42, 79–118 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    R.J. Bouwens, G.D. Illingworth, M. Franx et al., Astrophys. J. 686, 230–250 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    P. Madau, A. Meiksin, M.J. Rees, Astrophys. J. 475, 429 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    A. Loeb, M. Zaldarriaga, Phys. Rev. Lett. 92(21), 211301 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    N.Y. Gnedin, P.A. Shaver, Astrophys. J. 608, 611–621 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    T.-C. Chang, U.-L. Pen, K. Bandura, et al., ArXiv e-prints. (2010)Google Scholar
  9. 9.
    C.L. Carilli, Astrophys. J. Lett. 730, L30 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    E. Visbal, A. Loeb, J. Cosmol. Astropart. Physics. 11, 016 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Gong, A. Cooray, M. Silva et al., Astrophys. J. 745, 49 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    K. Basu, C. Hernández-Monteagudo, R.A. Sunyaev, Astron. Astrophys. 416, 447–466 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Gong, A. Cooray, M.B. Silva et al., Astrophys. J. Lett. 728, L46 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    R.C. Kennicutt Jr, Annu. Rev. Astron. Astrophys. 36, 189–232 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    G. De Lucia, J. Blaizot, MNRAS. 375, 2–14 (2007)Google Scholar
  16. 16.
    C. M. Bradford, et al., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5498, p. 257Google Scholar
  17. 17.
    E. Shirokoff, In this special issue LTD15 in J. Low Temp. Phys. (2013)Google Scholar
  18. 18.
    S. Hailey-Dunsheath, In this special issue LTD15 in J. Low Temp. Phys. (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Z. Staniszewski
    • 1
    Email author
  • J. J. Bock
    • 1
  • C. M. Bradford
    • 1
  • J. Brevik
    • 1
  • A. Cooray
    • 1
  • Y. Gong
    • 1
  • S. Hailey-Dunsheath
    • 1
  • R. O’Brient
    • 1
  • M. Santos
    • 1
  • E. Shirokoff
    • 1
  • M. Silva
    • 1
  • M. Zemcov
    • 1
  1. 1.Department of Physics and AstronomyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations