Journal of Low Temperature Physics

, Volume 176, Issue 3–4, pp 237–242 | Cite as

Atomic Layer Deposition of Tunnel Barriers for Superconducting Tunnel Junctions

  • Stephanie M. Moyerman
  • Guangyuan Feng
  • Lisa Krayer
  • Nathan Stebor
  • Brian G. Keating
Article

Abstract

We demonstrate a technique for creating high quality, large area tunnel junction barriers for normal–insulating–superconducting or superconducting–insulating–superconducting tunnel junctions. We use atomic layer deposition and an aluminum wetting layer to form a nanometer scale insulating barrier on gold films. Electronic transport measurements confirm that single-particle electron tunneling is the dominant transport mechanism, and the measured current–voltage curves demonstrate the viability of using these devices as self-calibrated, low temperature thermometers with a wide range of tunable parameters. This work represents a promising first step for superconducting technologies with deposited tunnel junction barriers. The potential for fabricating high performance junction refrigerators is also highlighted.

Keywords

Superconducting tunnel junctions Atomic layer deposition  Tunnel barriers 

References

  1. 1.
    G. Wendin, V.S. Shumeiko, Low Temp. Phys. 33, 724–744 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    F. Giazotto, T. Heikkila, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217274 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Muhonen, M. Meschke, J. Pekola, Rep. Prog. Phys. 75, 046501 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A.M. Clark, N.A. Miller, A. Williams, S.T. Ruggiero, G.C. Hilton, L.R. Vale, J.A. Beall, K.D. Irwin, J.N. Ullom, Appl. Phys. Lett. 86, 173508 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    P.J. Lowell, G.C. O’Neil, J.M. Underwood, J.N. Ullom, Appl. Phys. Lett. 102, 082601 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    R.W. Simmonds, K.M. Lang, D.A. Hite, S. Nam, D.P. Pappas, J.M. Martinis, Phys. Rev. Lett. 93, 077003 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, C.C. Yu, Phys. Rev. Lett. 95, 210503 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    L.C. Ku, C.C. Yu, Phys. Rev. B 72, 024526 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. Dai, Nat. Mater. 1, 241 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    M. Leskela, M. Ritala, Thin Solid Films 409, 138 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    S.M. George, Chem. Rev. 110, 111–131 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Lu, A. Elliot, L. Wille, B. Mao, S. Han, J. Wu, J. Talvacchio, H. Schulze, R. Lewis, D. Ewing, H. Yu, G. Xue, S. Zhao, IEEE Trans. Appl. Supercond. 23, 1100705 (2013)CrossRefGoogle Scholar
  13. 13.
    M.D. Groner, J.W. Elam, F.H. Fabreguette, S.M. George, Thin Solid Films 413, 186–197 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    A.M. Clark, A. Williams, S.T. Ruggiero, M.L. van den Berg, J.N. Ullom, Appl. Phys. Lett. 84(4), 625–627 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    C.H. Chang, Y.K. Chiou, C.W. Hsu, T.B. Wu, Electrochem. Solid State Lett. 10, G5–G7 (2007)CrossRefGoogle Scholar
  16. 16.
    I. Olejford, A. Nylund, Surf. Interface Anal. 21(5), 290–297 (1994)CrossRefGoogle Scholar
  17. 17.
    Elliot A, Malek G, Wille L, Lu R, Han S, Wu J, Talvacchio J, Lewis R, IEEE Trans. Appl. Supercond. 99 (2013) (in press)Google Scholar
  18. 18.
    R.F. Broom, A. Oosenbrug, W. Walter, Appl. Phys. Lett. 37, 237 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    M. Gurvitch, M.A. Washington, H.A. Huggins, Appl. Phys. Lett. 42, 472 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stephanie M. Moyerman
    • 1
  • Guangyuan Feng
    • 1
  • Lisa Krayer
    • 1
  • Nathan Stebor
    • 1
  • Brian G. Keating
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations