Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 870–875 | Cite as

The EDELWEISS-III Project and the Rejection Performance of Its Cryogenic Germanium Detectors

  • J. GasconEmail author
  • N. Bastidon


The EDELWEISS-III experiment searches for Dark matter using cryogenic germanium detectors in the low radioactivity environment of the Laboratoire Souterrain de Modane. The experiment and the FID detector design, whereby all surfaces are covered with interleaved electrodes, are described. The performance for gamma-ray and surface event rejection of these detectors is discussed. In particular, recent calibrations with a \(^{210}\)Pb source reveals that the excellent surface event rejection already demonstrated with planar interleaved electrodes also extends to the entire surface of the large FID detectors, even on their cylindrical outer surfaces, where the electric field has a more complicated geometry. Expected results with the full exposure of the EDELWEISS-III experiment are discussed.


Direct search for dark matter Germanium heat-and-ionization detectors 



The help of the technical staff of the Laboratoire Souterrain de Modane and the participant laboratories is gratefully acknowledged. The EDELWEISS project is supported in part by the French Agence Nationale pour la Recherche (Contract ANR-10-BLAN-0422-03) and P2IO Labex (Postdoc call 2012), the German ministry of science and education (BMBF) within the Verbundforschung Astroteilchenphysik (Grant 05A11VK2), the Helmholtz Alliance for Astroparticle Physics (HAP) funded by the Initiative and Networking Fund of the Helmholtz Association, the Russian Foundation for Basic Research (Russia) and the Science and Technology Facilities Council (UK).


  1. 1.
    G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    E. Armengaud et al., (EDELWEISS Collaboration). Phys. Lett. B 702, 329 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    B. Schmidt et al., (EDELWEISS Collaboration). Astropart. Phys. 44, 28 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    T. Shutt et al., Nucl. Instrum. Methods. Phys. Res. A 444, 340 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    A. Broniatowski et al., (EDELWEISS Collaboration). Phys. Lett. B 681, 305 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    A. Julliard for the EDELWEISS collaboration, J. Low Temp. Phys. 167, 1056 (2012)Google Scholar
  8. 8.
    E. Armengaud et al., (EDELWEISS Collaboration). Phys. Rev. D 86, 051701(R) (2012)ADSCrossRefGoogle Scholar
  9. 9.
    E. Armengaud et al. (EDELWEISS collaboration), J. Cosmol. Astropart. Phys. (JCAP) (2013), arXiv:1307.1488.
  10. 10.
    E. Armengaud et al., (EDELWEISS Collaboration). Astropart. Phys. 47, 1 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut de Physique Nucléaire de Lyon (IPNL)Université Lyon 1 and CNRS/IN2P3, Université de LyonVilleurbanne CedexFrance

Personalised recommendations