Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 3–4, pp 155–160 | Cite as

Critical Temperature Tuning of Ti/TiN Multilayer Films Suitable for Low Temperature Detectors

  • A. Giachero
  • P. Day
  • P. Falferi
  • M. Faverzani
  • E. Ferri
  • C. Giordano
  • B. Marghesin
  • F. Mattedi
  • R. Mezzena
  • R. Nizzolo
  • A. Nucciotti
Article

Abstract

We present our current progress on the design and test of Ti/TiN multilayer for use in kinetic inductance detectors. Sensors based on sub-stoichiometric TiN film are commonly used in several applications. However, it is difficult to control the targeted critical temperature \(T_c\), to maintain precise control of the nitrogen incorporation process and to obtain a production uniformity. To avoid these problems we investigated multilayer Ti/TiN films that show a high uniformity coupled with high quality factor, kinetic inductance and inertness of TiN. These features are ideal to realize superconductive microresonator detectors for astronomical instruments application but also for the field of neutrino physics. Using pure Ti and stoichiometric TiN, we developed and tested different multilayer configurations, in terms of number of Ti/TiN layers and in terms of different interlayer thicknesses. The target was to reach a critical temperature \(T_c\) around \((1{\div } 1.5)\) K in order to have a low energy gap and slower recombination time (i.e. low generation–recombination noise). The results prove that the superconductive transition can be tuned in the \((0.5{\div } 4.6)\) K temperature range by properly choosing the Ti thickness in the \((0{\div } 15)\) nm range, and the TiN thickness in the \((5{\div } 100)\) nm range.

Keywords

MKIDs Superconductive microresonator Neutrino physics 

Notes

Acknowledgments

This work is supported by Fondazione Cariplo through the project Development of Microresonator Detectors for Neutrino Physics (Grant International Recruitment Call 2010, ref. 2010-2351).

References

  1. 1.
    P.K. Day et al., Nature 425, 817–821 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    P.R. Maloney et al., Proc. SPIE 7741, 77410F (2010)CrossRefGoogle Scholar
  3. 3.
    B.A. Mazin et al., Appl. Phys. Lett. 89, 222507 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    T. Cecil et al., Appl. Phys. Lett. 101, 032601 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    J. Zmuidzinas, Annual Review of Condensed Matter Physics 3, 169–214 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Gao et al., Appl. Phys. Lett. 101, 142602 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J. Gao et al., NIMA 559, 585–587 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    H.G. Leduc et al., Appl. Phys. Lett. 97, 102509 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    M.R. Vissers et al., Appl. Phys. Lett. 97, 232509 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M.R. Vissers et al., Appl. Phys. Lett. 102, 232603 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M. Faverzani et al., J. Low. Temp. Phys. 167, 10411047 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Faverzani et al., NIMA 167, 492494 (2013)Google Scholar
  13. 13.
    W. Silvert, Journal of Low Temperature Physics 20, 439 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    N.R. Werthamer, Physical Review 132, 2440 (1963)ADSCrossRefGoogle Scholar
  15. 15.
    L. Yu, N. Newman, J.M. Rowell, IEEE Transactions on Applied Superconductivity 12, 1795 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Giachero
    • 1
  • P. Day
    • 2
  • P. Falferi
    • 3
  • M. Faverzani
    • 1
  • E. Ferri
    • 1
  • C. Giordano
    • 4
  • B. Marghesin
    • 4
  • F. Mattedi
    • 4
  • R. Mezzena
    • 5
  • R. Nizzolo
    • 1
  • A. Nucciotti
    • 1
  1. 1.Università di Milano-Bicocca and INFN Milano-BicoccaMilanoItaly
  2. 2.Jet Propulsion LaboratoryPasadenaUSA
  3. 3.Istituto di Fotonica e NanotecnologieCNR-Fondazione Bruno KesslerTrentoItaly
  4. 4.Fondazione Bruno KesslerTrentoItaly
  5. 5.Dipartimento di FisicaUniversità di TrentoTrentoItaly

Personalised recommendations