Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 650–656 | Cite as

Multi-Chroic Dual-Polarization Bolometric Detectors for Studies of the Cosmic Microwave Background

  • A. Suzuki
  • K. Arnold
  • J. Edwards
  • G. Engargiola
  • W. Holzapfel
  • B. Keating
  • A. T. Lee
  • X. F. Meng
  • M. J. Myers
  • R. O’Brient
  • E. Quealy
  • G. Rebeiz
  • P. L. Richards
  • D. Rosen
  • P. Siritanasak
Article

Abstract

We are developing multi-chroic antenna-coupled Transition Edge Sensor (TES) bolometer detectors for Cosmic Microwave Background (CMB) polarimetry. Multi-chroic detectors increase focal plane area efficiency, and thus the mapping speed per focal plane area, and provide greater discrimination against polarized galactic foregrounds with no increase in weight or cryogenic cost. In each pixel, a silicon lens-coupled dual-polarized sinuous antenna collects photons over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into multiple frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization state. We will describe the design and performance of these devices and present optical data taken. Our measurements of dual-polarization pixels in multiple frequency bands show beams with percent-level ellipticity, and percent-level cross-polarization leakage. We will also describe the development of large arrays of these multi-chroic pixels. Finally, we will describe kilo-pixel arrays of these detectors planned for the future CMB experiments that will achieve unprecedented mapping speed.

Keywords

Cosmic Microwave Background B-mode Broadband  Multichroic Polarization Anti-Reflectoin Coating 

Notes

Acknowledgments

We acknowledge support from the NASA, NASA grant NNG06GJ08G. Detectors were fabricated at Berkeley nanofabrication laboratory. Praween Siritanasak is supported by the Royal Thai Government fellowship.

References

  1. 1.
    K. Arnold, Design and Deployment of the POLARBEAR Cosmic Microwave Background Polarization Experiment. PhD thesis, University of California, Berkeley, 2010Google Scholar
  2. 2.
    R.H. Duhamel, Dual polarized sinuous antennas, 14 (1987)Google Scholar
  3. 3.
    J.M. Edwards, R. O’Brient, A.T. Lee, G.M. Rebeiz, Dual-polarized sinuous antennas on extended hemispherical silicon lenses. IEEE Trans. Antennas Propag. 60(9), 4082–4091 (2012)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Filipovic, Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses. IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    C. Galbraith, G. Rebeiz, Higher order cochlea-like channelizing filters. IEEE Trans. Microw. Theory Tech. 56(7), 1675–1683 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Kumar, A. Vayonakis, H. LeDuc, P. Day, S. Golwala, J. Zmuidzinas, Millimeter-wave lumped element superconducting bandpassfilters for multi-color imaging. IEEE Trans. Appl. Supercond. 19(3), 924–929 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    R. O’Brient, A Log Periodic Focal-Plane Architecture for Cosmic Microwave Background Polarimetry. PhD thesis, University of California, Berkeley (2010)Google Scholar
  8. 8.
    R. O’Brient, P. Ade, K. Arnold, J. Edwards, G. Engargiola et al., A dual-polarized broadband planar antenna and channelizing filter bank for millimeter wavelengths. Appl. Phys. Lett. 102(6), 063506 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A. Suzuki, K. Arnold, J. Edwards, G. Engargiola, A. Ghribi, et al. Multichroic dual-polarization bolometric detectors for studies of the cosmic microwave background, in Proceedings of Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, pp. 84523H–84523H-10, (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Suzuki
    • 1
  • K. Arnold
    • 2
  • J. Edwards
    • 3
  • G. Engargiola
    • 4
  • W. Holzapfel
    • 1
  • B. Keating
    • 2
  • A. T. Lee
    • 1
  • X. F. Meng
    • 5
  • M. J. Myers
    • 1
  • R. O’Brient
    • 6
  • E. Quealy
    • 1
  • G. Rebeiz
    • 3
  • P. L. Richards
    • 1
  • D. Rosen
    • 1
  • P. Siritanasak
    • 2
  1. 1.Department of PhysicsUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Department of PhysicsUniversity of California, San DiegoLa JollaUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of California, San DiegoLa JollaUSA
  4. 4.Lawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Department of Electrical EngineeringUniversity of California, BerkeleyBerkeleyUSA
  6. 6.Department of PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations