Journal of Low Temperature Physics

, Volume 176, Issue 3–4, pp 337–343 | Cite as

A Mo/Au Bilayer Transition Edge Sensor Modified with Normal Metal Structures

  • G. Wang
  • V. Yefremenko
  • C. L. Chang
  • J. Mehl
  • V. Novosad
  • J. Pearson
  • R. Divan
  • J. E. Carlstrom
Article

Abstract

In this work, we explore a technical path to defining the normal-to-superconducting transition profile of a superconducting transition edge sensor (TES) using normal metal stripes on surface. The stripes modify the TES transition through the lateral proximity effect. We experimentally demonstrate that varying the width, thickness and spacing of the normal metal stripes alters the TES resistive transition profile as a function of temperature and current.

Keywords

Superconductivity Proximity effect Transition edge sensor Bolometer 

References

  1. 1.
    M. Lueker, B.A. Benson, C.L. Chang, H.M. Cho, M. Dobbs, W.L. Holzapfel et al., IEEE Trans. Appl. Supercond. 19, 496 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    J. Hubmayr, J.E. Austermann, J.A. Beall, D. Becker, D.A. Bennett, B.A. Benson et al., IEEE Trans. Appl. Supercond. 21, 203 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    V. Yefremenko, P. Ade, K. Aird, J. Austermann, J. Beall, D. Becker et al., IEEE Trans. Appl. Supercond. 23, 210065 (2013)Google Scholar
  4. 4.
    K.D. Irwin, G.C. Hilton, in Transition-Edge Sensors in Cryogenic Particle Detection, ed. by C. Enss (Springer, New York, 2005)Google Scholar
  5. 5.
    J.E. Sadleir, S.J. Smith, S.R. Bandler, J.A. Chervenak, J.R. Clem, Phys. Rev. Lett. 104, 047003 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Sadleir, S.J. Smith, I.K. Robinson, F.M. Finkbeiner, J.A. Chervenak, S.R. Bandler et al., Phys. Rev. B 84, 184502 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A.G. Kozorezov, A.A. Golubov, D.D.E. Martin, A.A.J. de Korte, M.A. Lindeman, R.A. Hijmering, J.K. Wigmore et al., IEEE Trans. Appl. Supercond. 21, 250 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C.L. Chang, P. Ade, K. Aird, J. Austermann, J. Beall, D. Becker et al., J. Low Temp. Phys. 167, 865 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    G. Wang, V. Yefremenko, C.L. Chang, V. Novosad, J. Mehl, J. Pearson, R. Divan, J.E. Carlstrom, IEEE Trans. Appl. Supercond. 23, 2101605 (2013)CrossRefGoogle Scholar
  10. 10.
    J.E. Sadleir, S.J. Smith, S.R. Bandler, J.S. Adams, S.E. Busch, M.E. Eckart et al., IEEE Trans. Appl. Supercond. 23, 2101405 (2013)CrossRefGoogle Scholar
  11. 11.
    J.N. Ullom, W.B. Doriese, G.C. Hilton, J.A. Beal, S. Deiker, W.D. Duncan et al., Appl. Phys. Lett. 84, 4026 (2004)CrossRefGoogle Scholar
  12. 12.
    S.J. Smith, S.R. Bandler, A.D. Brown, J.A. Chervenak, E. Figueroa-Feliciano, F. Finkbeiner et al., J. Low Temp. Phys. 151, 195 (2008)Google Scholar
  13. 13.
    K.K. Likharev, Rev. Mod. Phys. 51, 101 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    P.G. De Gennes, Rev. Mod. Phys. 36, 225 (1964)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Golubov, M.Yu. Kupriyanov, E. II’ichev, Rev. Mod. Phys. 76, 411 (2004)Google Scholar
  16. 16.
    W. Silvert, Solid State Commun. 17, 1137 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B 49, 5942 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • G. Wang
    • 1
  • V. Yefremenko
    • 1
  • C. L. Chang
    • 1
  • J. Mehl
    • 1
  • V. Novosad
    • 2
  • J. Pearson
    • 2
  • R. Divan
    • 3
  • J. E. Carlstrom
    • 4
  1. 1.HEPArgonne National LaboratoryArgonneUSA
  2. 2.MSDArgonne National LaboratoryArgonneUSA
  3. 3.CNMArgonne National LaboratoryArgonneUSA
  4. 4.Kavli Institute for Cosmological PhysicsThe University of ChicagoChicagoUSA

Personalised recommendations