Skip to main content
Log in

Switching of Current Spin Polarization by Electron-Phonon Interaction in a Quantum Dot Device

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study spin-polarized electron transport through a quantum dot coupled to one normal metal lead and one ferromagnetic lead. Both the intradot Coulomb correlation and the electron-phonon interaction are taken into account in the framework of nonequilibrium Green’s function theory. We find that due to the interplay of the Coulomb blockade effect and the phonon-induced extra electron transport channels, the spin polarization of the electron current driven by external bias voltage is enhanced in a range of negative biases in which the current is flowing from the ferromagnetic lead to the normal metal one. While for the corresponding positive biases, the current polarization is suppressed to negative values where the current is flowing from the normal metal lead to the ferromagnetic one. The device thus operates as a current polarization switcher without the need of a magnetic field or spin-orbit interaction, and may find use in low-power spintronic devices with the help of phonon engineering techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Diet, Y. Ohno, K. Ohtani, Nature (London) 408, 944 (2000)

    Article  ADS  Google Scholar 

  2. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, H. Ohno, Nature (London) 455, 515 (2008)

    Article  ADS  Google Scholar 

  3. K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, E. Saitoh, Phys. Rev. Lett. 101, 036601 (2008)

    Article  ADS  Google Scholar 

  4. V.E. Demidov, S. Urazhdin, E.R.J. Edwards, M.D. Stiles, R.D. McMichael, S.O. Demokritov, Phys. Rev. Lett. 107, 107204 (2011)

    Article  ADS  Google Scholar 

  5. E.I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960). See also Sov. Phys., Solid State 2, 1109 (1960)

    Google Scholar 

  6. Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  7. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  8. A.E. Botha, M.R. Singh, Phys. Rev. B 67, 195334 (2003)

    Article  ADS  Google Scholar 

  9. M.M. Glazov, P.S. Alekseev, M.A. Odnoblyudov, V.M. Chistyakov, S.A. Tarasenko, I.N. Yassievich, Phys. Rev. B 67, 195334 (2005)

    Google Scholar 

  10. W. Li, Y. Guo, Phys. Rev. B 73, 205311 (2006)

    Article  ADS  Google Scholar 

  11. S. Murakami, N. Nagaosa, S.C. Zhang, Science 301, 1348 (2003)

    Article  ADS  Google Scholar 

  12. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Science 306, 1910 (2004)

    Article  ADS  Google Scholar 

  13. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005)

    Article  ADS  Google Scholar 

  14. Q.F. Sun, J. Wang, H. Guo, Phys. Rev. B 71, 165310 (2005)

    Article  ADS  Google Scholar 

  15. Q.F. Sun, X.C. Xie, Phys. Rev. B 73, 235301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. H.F. Lü, Y. Guo, Phys. Rev. B 76, 045120 (2007)

    Article  ADS  Google Scholar 

  17. H.F. Lü, Y. Guo, Appl. Phys. Lett. 92, 062109 (2008)

    Article  ADS  Google Scholar 

  18. F. Chi, J. Zheng, Appl. Phys. Lett. 92, 062106 (2008)

    Article  ADS  Google Scholar 

  19. F. Chi, J. Zheng, L.L. Sun, Appl. Phys. Lett. 92, 172104 (2008)

    Article  ADS  Google Scholar 

  20. S.M. Frolov, A. Venkatesan, W. Yu, J.A. Folk, W. Wegscheider, Phys. Rev. Lett. 102, 116802 (2009)

    Article  ADS  Google Scholar 

  21. S.M. Frolov, S. Lüscher, W. Yu, Y. Ren, J.A. Folk, W. Wegscheider, Nature 458, 868 (2009)

    Article  ADS  Google Scholar 

  22. D.K. Wang, Q.F. Sun, H. Guo, Phys. Rev. B 69, 205312 (2004)

    Article  ADS  Google Scholar 

  23. P. Zhang, Q.K. Xue, X.C. Xie, Phys. Rev. Lett. 91, 196602 (2003)

    Article  ADS  Google Scholar 

  24. F. Chi, X.N. Dai, L.L. Sun, Appl. Phys. Lett. 96, 082102 (2010)

    Article  ADS  Google Scholar 

  25. Q.F. Sun, Y.X. Xing, S.Q. Shen, Phys. Rev. B 77, 195313 (2008)

    Article  ADS  Google Scholar 

  26. H.Z. Lu, S.Q. Shen, Phys. Rev. B 77, 235309 (2008)

    Article  ADS  Google Scholar 

  27. F. Chi, Q.F. Sun, Phys. Rev. B 81, 075310 (2010)

    Article  ADS  Google Scholar 

  28. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Article  Google Scholar 

  29. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature (London) 442, 759 (2006)

    Article  ADS  Google Scholar 

  30. S. Lee, W. Ratcliff II, S.-W. Cheong, V. Kiryukhin, Appl. Phys. Lett. 9(2), 192906 (2008)

    Article  ADS  Google Scholar 

  31. J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S.Y. Yang, D.E. Nikonov, Y.-H. Chu, S. Salahuddin, R. Ramesh, Phys. Rev. Lett. 107, 217202 (2011)

    Article  ADS  Google Scholar 

  32. I.M. Miron, K. Garello, G. Gaudin, P.J. Zermatten, M.V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Nature (London) 476, 189 (2011)

    Article  ADS  Google Scholar 

  33. L.Q. Liu, O.J. Lee, T.J. Gudmundsen, D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 109, 096602 (2012)

    Article  ADS  Google Scholar 

  34. G.A. Prinz, Science 282, 1660 (1998)

    Article  Google Scholar 

  35. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnér, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  36. J. Barnaś, I. Weymann, J. Phys. Condens. Matter 20, 423202 (2008)

    Article  ADS  Google Scholar 

  37. B.R. Bulka, Phys. Rev. B 62, 1186 (2000)

    Article  ADS  Google Scholar 

  38. W. Rudzińki, J. Barnaś, Phys. Rev. B 64, 085318 (2001)

    Article  ADS  Google Scholar 

  39. J. König, J. Martinek, Phys. Rev. Lett. 90, 166602 (2003)

    Article  ADS  Google Scholar 

  40. M. Braun, J. König, J. Martinek, Phys. Rev. B 70, 195345 (2004)

    Article  ADS  Google Scholar 

  41. W. Rudzińki, J. Barnaś, R. Świrkowicz, M. Wilczyński, Phys. Rev. B 71, 205307 (2005)

    Article  ADS  Google Scholar 

  42. W. Wetzels, G.E.W. Bauer, M. Grifoni, Phys. Rev. B 72, 020407 (2005)

    Article  ADS  Google Scholar 

  43. I. Weymann, J. Barnaś, Phys. Rev. B 73, 205309 (2006)

    Article  ADS  Google Scholar 

  44. J.N. Pedersen, J.Q. Thomassen, K. Flensberg, Phys. Rev. B 72, 045341 (2005)

    Article  ADS  Google Scholar 

  45. K. Hamaya, S. Masubuchi, M. Kawamura, T. Machida, M. Jung, K. Shibata, K. Hirakawa, T. Taniyama, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 90, 053108 (2007)

    Article  ADS  Google Scholar 

  46. K. Hamaya, M. Kitabatake, K. Shibata, M. Jung, M. Kawamura, T. Machida, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 91, 022107 (2007)

    Article  ADS  Google Scholar 

  47. K. Hamaya, M. Kitabatake, K. Shibata, M. Jung, M. Kawamura, S. Ishida, T. Taniyama, K. Hirakawa, Y. Arakawa, T. Machida, Phys. Rev. B 77, 081302(R) (2008)

    Article  ADS  Google Scholar 

  48. P. Stefański, Phys. Rev. B 79, 085312 (2009)

    Article  ADS  Google Scholar 

  49. Z.Z. Chen, R. Lü, B.F. Zhu, Phys. Rev. B 71, 165324 (2005)

    Article  ADS  Google Scholar 

  50. R.Q. Wang, Y.Q. Zhou, B.G. Wang, D.Y. Xing, Phys. Rev. B 75, 045318 (2007)

    Article  ADS  Google Scholar 

  51. W. Rudziński, J. Phys. Condens. Matter 20, 275214 (2008)

    Article  Google Scholar 

  52. F.M. Souza, J.C. Egues, A.P. Jauho, Phys. Rev. B 75, 165303 (2007)

    Article  ADS  Google Scholar 

  53. A.A. Balandin, J. Nanosci. Nanotechnol. 5, 1015 (2005)

    Article  Google Scholar 

  54. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature (London) 464, 697 (2010)

    Article  ADS  Google Scholar 

  55. A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)

    Article  ADS  Google Scholar 

  56. A. Ueda, M. Eto, New J. Phys. 9, 119 (2007)

    Article  ADS  Google Scholar 

  57. A. Ueda, M. Eto, Phys. Rev. B 73, 235353 (2006)

    Article  ADS  Google Scholar 

  58. Q.F. Sun, X.C. Xie, Phys. Rev. B 75, 155306 (2007)

    Article  ADS  Google Scholar 

  59. J. Liu, J.T. Song, Q.F. Sun, X.C. Xie, Phys. Rev. B 79, 161309(R) (2009)

    Article  ADS  Google Scholar 

  60. G.J. Schinner, H.P. Tranitz, W. Wegscheider, J.P. Kotthaus, S. Ludwig, Phys. Rev. Lett. 102, 186801 (2009)

    Article  ADS  Google Scholar 

  61. D. Harbusch, D. Taubert, H.P. Tranitz, W. Wegscheider, S. Ludwig, Phys. Rev. Lett. 104, 196801 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the NSF-China under Grant No. 61274101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Zheng, J. & Chi, F. Switching of Current Spin Polarization by Electron-Phonon Interaction in a Quantum Dot Device. J Low Temp Phys 174, 148–158 (2014). https://doi.org/10.1007/s10909-013-0976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0976-5

Keywords

Navigation