Skip to main content
Log in

Transport Properties for Triangular Barriers in Graphene Nanoribbon

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We theoretically study the electronic transport properties of Dirac fermions through one and double triangular barriers in graphene nanoribbon. Using the transfer matrix method, we determine the transmission, conductance and Fano factor. They are obtained to be various parameters dependent such as well width, barrier height and barrier width. Therefore, different discussions are given and comparison with the previous significant works is done. In particular, it is shown that at Dirac point the Dirac fermions always own a minimum conductance associated with a maximum Fano factor and change their behaviors in an oscillatory way (irregularly periodical tunneling peaks) when the potential of applied voltage is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. N. Stander, B. Huard, D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009)

    Article  ADS  Google Scholar 

  3. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  4. H. Sevincli, M. Topsakal, S. Ciraci, Phys. Rev. B 78, 245402 (2008)

    Article  ADS  Google Scholar 

  5. W. Van Roy, J. De Boeck, G. Borghs, Appl. Phys. Lett. 61, 3056 (1992)

    Article  ADS  Google Scholar 

  6. F.M. Peeters, A. Matulis, Phys. Rev. B 48, 15166 (1993)

    Article  ADS  Google Scholar 

  7. H.A. Carmona, A.K. Geim, A. Nogaret, P.C. Main, T.J. Foster, M. Henini, Phys. Rev. Lett. 74, 3009 (1995)

    Article  ADS  Google Scholar 

  8. P.D. Ye, D. Weiss, R.R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl, H. Nickel, Phys. Rev. Lett. 74, 3013 (1995)

    Article  ADS  Google Scholar 

  9. S. Mukhopadhyay, R. Biswas, C. Sinha, Phys. Status Solidi B 247, 342 (2010)

    Article  ADS  Google Scholar 

  10. A.D. Alhaidari, H. Bahlouli, A. Jellal, Adv. Math. Phys. 762908 (2012)

  11. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal’ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006)

    Article  Google Scholar 

  12. L. Dell’Anna, A. De Martino, Phys. Rev. B 79, 045420 (2009)

    Article  ADS  Google Scholar 

  13. Y.X. Li, J. Phys.: Condens. Matter 22, 015302 (2010)

    Article  ADS  Google Scholar 

  14. M. Ramezani Masir, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 79, 035409 (2009)

    Article  ADS  Google Scholar 

  15. J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, C.W.J. Beenakker, Phys. Rev. Lett. 96, 246802 (2006)

    Article  ADS  Google Scholar 

  16. M. Ramezani Masir, P. Vasilopoulos, F.M. Peeters, New J. Phys. 11, 095009 (2009)

    Article  ADS  Google Scholar 

  17. E.B. Choubabi, M. El Bouziani, A. Jellal, Int. J. Geom. Methods Mod. Phys. 7, 909 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Jellal, A. El Mouhafid, J. Phys. A, Math. Theor. 44, 015302 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  19. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  20. O. Klein, Z. Phys. 53, 157 (1929)

    Article  ADS  MATH  Google Scholar 

  21. F. Sauter, Z. Phys. 69, 742 (1931)

    Article  ADS  Google Scholar 

  22. A. Hansen, F. Ravndal, Phys. Scr. 23, 1036 (1981)

    Article  ADS  Google Scholar 

  23. S. De Leo, P.P. Rotelli, Phys. Rev. A 73, 042107 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  24. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  25. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  26. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  27. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 96, 256602 (2006)

    Article  ADS  Google Scholar 

  28. M.V. Berry, R.J. Modragon, Proc. R. Soc. Lond. Ser. A 412, 53 (1987)

    Article  ADS  Google Scholar 

  29. K.F. Brennan, C.J. Summers, J. Appl. Phys. 61, 614 (1987)

    Article  ADS  Google Scholar 

  30. S.S. Allen, S.L. Richardson, Phys. Rev. B 50, 11693 (1994)

    Article  ADS  Google Scholar 

  31. H. Bahlouli, E.B. Choubabi, A. EL Mouhafid, A. Jellal, Solid State Commun. 151, 1309 (2011)

    Article  ADS  Google Scholar 

  32. A.D. Alhaidari, A. Jellal, E.B. Choubabi, H. Bahlouli, Quantum Matter 2, 140 (2013)

    Article  Google Scholar 

  33. H. Inaba, K. Kurosawa, M. Okuda, Jpn. J. Appl. Phys. 28, 2201 (1989)

    Article  ADS  Google Scholar 

  34. B.H.J. McKellar, G.J. Stephenson Jr., Phys. Rev. C 35, 2262 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Barbier, F.M. Peeters, P. Vasilopoulos, J.M. Pereira, Phys. Rev. B 77, 115446 (2008)

    Article  ADS  Google Scholar 

  36. R. Danneau, F. Wu, M.F. Craciun, S. Russo, M.Y. Tomi, J. Salmilehto, A.F. Morpurgo, P.J. Hakonen, J. Low Temp. Phys. 153, 374 (2008)

    Article  ADS  Google Scholar 

  37. Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  38. I. Snyman, C.W.J. Beenakker, Phys. Rev. B 75, 045322 (2007)

    Article  ADS  Google Scholar 

  39. N.M.R. Peres, J. Phys.: Condens. Matter 21, 323201 (2009)

    Article  Google Scholar 

  40. L. DiCarlo, J.R. Williams, Y. Zhang, D.T. McClure, C.M. Marcus, Phys. Rev. Lett. 100, 156801 (2008)

    Article  ADS  Google Scholar 

  41. M.I. Katsnelson, Eur. Phys. J. B 51, 157 (2006)

    Article  ADS  Google Scholar 

  42. M.I. Katsnelson, Eur. Phys. J. B 52, 151 (2006)

    Article  ADS  Google Scholar 

  43. C.W.J. Beenakker, M. Buttiker, Phys. Rev. B 46, 1889 (1992)

    Article  ADS  Google Scholar 

  44. K. Nagaev, Phys. Lett. A 169, 103 (1992)

    Article  ADS  Google Scholar 

  45. E.V. Gorbar, V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. B 66, 045108 (2002)

    Article  ADS  Google Scholar 

  46. M. Ramezani Masir, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 82, 115417 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by all authors. AJ thanks the Deanship of Scientific Research at King Faisal University for funding this research number (140232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Jellal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Mouhafid, A., Jellal, A. Transport Properties for Triangular Barriers in Graphene Nanoribbon. J Low Temp Phys 173, 264–281 (2013). https://doi.org/10.1007/s10909-013-0918-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0918-2

Keywords

Navigation