Journal of Low Temperature Physics

, Volume 175, Issue 1–2, pp 498–507 | Cite as

Non-Fermi Liquid Behaviour in the Heavy-Fermion Kondo Lattice Ce2Rh3Al9

  • M. Falkowski
  • A. M. Strydom


In the heavy fermion class of strongly correlated electron systems, the Landau Fermi liquid description of metals has become a rather fragile basis on which to formulate an understanding of their ground state. The proximity to cooperative phenomena such as magnetic order and superconductivity and the amenability of Ce- and Yb-based compounds to be tuned into quantum criticality have been found to have extraordinary effects on the T→0 thermal scaling of electronic and magnetic properties. A collection of non-Fermi liquid scaling relations have thus far been proposed in the search for universality. Here we report on the physical properties of the heavy fermion Kondo lattice Ce2Rh3Al9. The low-temperature specific heat and electrical resistivity are best described by power laws in their temperature dependence, and we model these according to the expectation for a system close to a magnetic phase transition. We demonstrate how applied magnetic fields drive the transition from the Kondo coherent state, through a cross-over phase, and into Fermi-liquid behaviour at high fields and low temperatures.


Heavy fermions Kondo lattice Non-Fermi liquid 



A.M.S. gratefully thanks the URC of UJ, and the SA-NRF (78832) for financial assistance. M.F. acknowledges support from the UJ Faculty of Science and URC for Postdoctoral Fellowship. Douglas Britz is thanked for experimental assistance.


  1. 1.
    P. Gegenwart, Q. Si, F. Steglich, Nat. Phys. 4, 186 (2008) CrossRefGoogle Scholar
  2. 2.
    Q. Si, F. Steglich, Science 329, 1161 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Tovarelli, C. Geibel, F. Steglich, P. Coleman, Q. Si, Nature 432, 881 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G.G. Lonzarich, L. Balicas, H. Lee, Z. Fisk, Nat. Phys. 4, 603 (2008) CrossRefGoogle Scholar
  5. 5.
    A.M. Strydom, P. Peratheepan, Phys. Status Solidi RRL 4, 356 (2010) CrossRefGoogle Scholar
  6. 6.
    P. Coleman, Ann. Henri Poincaré 4(Suppl. 2), S559 (2003) ADSCrossRefMATHGoogle Scholar
  7. 7.
    B. Buschiner, C. Geibel, M. Weiden, C. Dietrich, G. Cordier, G. Olesch, J. Kö hler, F. Steglich, J. Alloys Compd. 260, 44 (1997) CrossRefGoogle Scholar
  8. 8.
    A.M. Strydom, Solid State Commun. 123, 343 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    B. Buschinger, O. Trovarelli, M. Weiden, C. Geibel, F. Steglich, J. Alloys Compd. 275–277, 633 (1998) CrossRefGoogle Scholar
  10. 10.
    A. Hiess, S. Coad, B. Buschinger, O. Trovarelli, J.X. Boucherle, F. Givord, T. Hansen, E. Lelievre-Berna, E. Suard, C. Geibel, F. Steglich, Physica B 259–261, 343 (1999) CrossRefGoogle Scholar
  11. 11.
    J. Goraus, A. Ślebarski, J. Deniszczyk, Mat. Sci. Pol. 24, 563 (2006) Google Scholar
  12. 12.
    D.T. Adroja, S.K. Malik, B.D. Padalia, R. Vijayaraghavan, Phys. Rev. B 39, R4831 (1989) ADSCrossRefGoogle Scholar
  13. 13.
    S.K. Malik, D.T. Adroja, Phys. Rev. B 43, R6277 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    S. Layek, V.K. Anand, Z. Hossain, J. Magn. Magn. Mater. 321, 3447 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    N. Kumar, K.V. Shah, R. Nagalakshmi, S.K. Dhar, J. Appl. Phys. 107, 09E113 (2010) Google Scholar
  16. 16.
    B.C. Sales, D.K. Wohlleben, Phys. Rev. Lett. 35, 1240 (1975) ADSCrossRefGoogle Scholar
  17. 17.
    B. Coqblin, R.J. Schrieffer, Phys. Rev. 185, 847 (1969) ADSCrossRefGoogle Scholar
  18. 18.
    V.T. Rajan, Phys. Rev. Lett. 51, 308 (1983) ADSCrossRefGoogle Scholar
  19. 19.
    A.C. Hewson, J.W. Rasul, J. Phys. C, Solid State Phys. 16, 6799 (1983) ADSCrossRefGoogle Scholar
  20. 20.
    W. Wendler, P. Smeibidl, F. Pobell, J. Low Temp. Phys. 108, 291 (1997) ADSCrossRefGoogle Scholar
  21. 21.
    A. Steppke, M. Brando, N. Oeschler, C. Krellner, C. Geibel, F. Steglich, Phys. Status Solidi 247 (2010) Google Scholar
  22. 22.
    T. Moriya, T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995) ADSCrossRefGoogle Scholar
  23. 23.
    J. Goraus, A. Ślebarski, J. Magn. Magn. Mater. 315, 111 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    H.v. Löhneysen, Physica B 206–207, 101 (1995) CrossRefGoogle Scholar
  25. 25.
    J. Custers, P. Gegenwart, C. Geibel, F. Steglich, P. Coleman, S. Paschen, Phys. Rev. Lett. 104, 186402 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    J.A.N. Bruin, H. Sakai, R.S. Perry, A.P. Mackenzie, Science 339, 804 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    J. Custers, K.-A. Lorenzer, M. Müller, A. Prokofiev, A. Sidorenko, H. Winkler, A.M. Strydom, Y. Shimura, T. Sakakibara, R. Yu, Q. Si, S. Paschen, Nat. Mater. 11, 189 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of JohannesburgAuckland ParkSouth Africa

Personalised recommendations