Journal of Low Temperature Physics

, Volume 173, Issue 3–4, pp 152–169 | Cite as

Highly Controllable Qubit-Bath Coupling Based on a Sequence of Resonators

  • Philip J. Jones
  • Juha Salmilehto
  • Mikko Möttönen
Article

Abstract

Combating the detrimental effects of noise remains a major challenge in realizing a scalable quantum computer. To help to address this challenge, we introduce a model realizing a controllable qubit-bath coupling using a sequence of LC resonators. The model establishes a strong coupling to a low-temperature environment which enables us to lower the effective qubit temperature making ground state initialization more efficient. The operating principle is similar to that of a recently proposed coplanar-waveguide cavity (CPW) system, for which our work introduces a complementary and convenient experimental realization. The lumped-element model utilized here provides an easily accessible theoretical description. We present analytical solutions for some experimentally feasible parameter regimes and study the control mechanism. Finally, we introduce a mapping between our model and the recent CPW system.

Keywords

Quantum bit Open quantum system Environment engineering Circuit quantum electrodynamics 

References

  1. 1.
    W.G. Unruh, Phys. Rev. A 51, 992 (1995) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    A.M. Steane, Nature (London) 399, 124 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature (London) 464, 45 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    J.Q. You, F. Nori, Phys. Rev. B 68, 064509 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature (London) 431, 162 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    J.Q. You, F. Nori, Phys. Today 58, 42 (2005) CrossRefGoogle Scholar
  8. 8.
    J.Q. You, F. Nori, Nature (London) 474, 589 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    A. Blais, J. Gambetta, A. Wallraff, D.I. Schuster, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. A 75, 032329 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    D.I. Schuster, A.A. Houck, J.A. Schreier, A. Wallraff, J.M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Nature (London) 445, 515 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    L. DiCarlo, J.M. Chow, J.M. Gambetta, L.S. Bishop, B.R. Johnson, D.I. Schuster, J. Majer, A. Blais, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nature (London) 460, 240 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    J. Clarke, F.K. Wilhelm, Nature (London) 453, 1031 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    I. Buluta, F. Nori, Science 326, 108 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    I. Buluta, S. Ashhab, F. Nori, Rep. Prog. Phys. 74, 104401 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Huemmer, E. Solano, A. Marx, R. Gross, Nat. Phys. 6, 772 (2010) CrossRefGoogle Scholar
  16. 16.
    Z.-L. Xiang, S. Ashhab, J.Q. You, F. Nori, Rev. Mod. Phys. 85, 623 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    H. Paik, D.I. Schuster, L.S. Bishop, G. Kirchmair, G. Catelani, A.P. Sears, B.R. Johnson, M.J. Reagor, L. Frunzio, L.I. Glazman, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. Lett. 107, 240501 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    M.H. Devoret, R.J. Schoelkopf, Science 339, 1169 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76, 042319 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    V.E. Manucharyan, J. Koch, L.I. Glazman, M.H. Devoret, Science 326, 113 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    P. Nataf, C. Ciuti, Phys. Rev. Lett. 107, 190402 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    P.J. Jones, J.A.M. Huhtamäki, K.Y. Tan, M. Möttönen, Phys. Rev. B 85, 075413 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    P.J. Jones, J.A.M. Huhtamäki, M. Partanen, K.Y. Tan, M. Möttönen, Phys. Rev. B 86, 035313 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    P.J. Jones, J.A.M. Huhtamäki, J. Salmilehto, K.Y. Tan, M. Möttönen, Sci. Rep. 3, 1987 (2013) ADSGoogle Scholar
  25. 25.
    J.E. Johnson, C. Macklin, D.H. Slichter, R. Vijay, E.B. Weingarten, J. Clarke, I. Siddiqi, Phys. Rev. Lett. 109, 050506 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    D. Ristè, J.G. van Leeuwen, H.-S. Ku, K.W. Lehnert, L. DiCarlo, Phys. Rev. Lett. 109, 050507 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    M.D. Reed, B.R. Johnson, A.A. Houck, L. DiCarlo, J.M. Chow, D.I. Schuster, L. Frunzio, R.J. Schoelkopf, Appl. Phys. Lett. 96, 203110 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    D. Pozar, Microwave Engineering (Wiley, Hoboken, 2004) Google Scholar
  29. 29.
    J.T. Muhonen, M. Meschke, J.P. Pekola, Rep. Prog. Phys. 75, 046501 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    S.O. Valenzuela, W.D. Oliver, D.M. Berns, K.K. Berggren, L.S. Levitov, T.P. Orlando, Science 314, 1589 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    J.Q. You, Y.-x. Liu, F. Nori, Phys. Rev. Lett. 100, 047001 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    M. Grajcar, S. Ashhab, J.R. Johansson, F. Nori, Phys. Rev. B 78, 035406 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    M. Grajcar, S.H.W. van der Ploeg, A. Izmalkov, E. Il’ichev, H.-G. Meyer, A. Fedorov, A. Shnirman, G. Schön, Nat. Phys. 4, 612 (2008) CrossRefGoogle Scholar
  35. 35.
    A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981) ADSCrossRefGoogle Scholar
  36. 36.
    B. Yurke, J.S. Denker, Phys. Rev. A 29, 1419 (1984) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002) ADSCrossRefGoogle Scholar
  38. 38.
    A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010) MathSciNetADSCrossRefMATHGoogle Scholar
  39. 39.
    P. Horowitz, W. Hill, The Art of Electronics (Cambridge University Press, New York, 1989) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Philip J. Jones
    • 1
  • Juha Salmilehto
    • 1
  • Mikko Möttönen
    • 1
    • 2
  1. 1.QCD Labs, COMP Centre of Excellence, Department of Applied PhysicsAalto UniversityAaltoFinland
  2. 2.Low Temperature Laboratory (OVLL)Aalto UniversityAaltoFinland

Personalised recommendations