Skip to main content
Log in

The Decoherence of GaAs Quantum Dot Qubit Due to Electron–Phonon Interactions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate electron charge decoherence in a GaAs single-electron semiconductor quantum dot through electron–phonon interaction. We analytically and numerically evaluate decoherence time within the Lee–Low–Pines–Huybrecht variational calculation for all coupling strengths. The dependence of decoherence time on the electron-LO-phonon coupling strength and the size of quantum dot is investigated. Our results suggest that electron–phonon interaction has very important effects on charge decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P.W. Shor, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, ed. by S. Goldwasser (IEEE Computer Society, Los Alamitos, 1994), p. 124

    Chapter  Google Scholar 

  2. D. DiVincenzo, Science 270, 255 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Steane, Rep. Prog. Phys. 61, 117 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  4. I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  5. M. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  6. Yu. Makhlin, G. Schn, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  7. V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M.H. Devoret, Phys. Scr. T 76, 165 (1998)

    Article  ADS  Google Scholar 

  8. Y. Nakamura, Yu.A. Pashkin, J.S. Tsai, Nature (London) 398, 786 (1999)

    Article  ADS  Google Scholar 

  9. I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science 431, 159 (2004)

    Google Scholar 

  10. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  11. B.E. Kane, Nature (London) 393, 133 (1998)

    Article  ADS  Google Scholar 

  12. B.E. Kane, Fortschr. Phys. 48, 1023 (2000)

    Article  Google Scholar 

  13. M.S. Sherwin, A. Imamoglu, T. Montroy, Phys. Rev. A 60, 3508 (1999)

    Article  ADS  Google Scholar 

  14. S.S. Li, J.B. Xia, Chin. Phys. 16, 0001 (2007)

    Article  ADS  Google Scholar 

  15. S.S. Li, J.B. Xia, J. Appl. Phys. 100, 083714 (2006)

    Article  ADS  Google Scholar 

  16. S.S. Li, J.B. Xia, Chin. Phys. Lett. 23, 1896 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. F. Chi, S.S. Li, J. Appl. Phys. 99, 043705 (2006)

    Article  ADS  Google Scholar 

  18. J.P. Barnes, W.S. Warren, Phys. Rev. A 60, 4363 (1999)

    Article  ADS  Google Scholar 

  19. D. Tolkunov, V. Privman, Phys. Rev. A 69, 062309 (2004)

    Article  ADS  Google Scholar 

  20. A. Grodecka, P. Machnikowski, Phys. Rev. B 73, 125306 (2006)

    Article  ADS  Google Scholar 

  21. M. Lovric, H.G. Krojanski, D. Suter, Phys. Rev. A 75, 042305 (2007)

    Article  ADS  Google Scholar 

  22. S.S. Li, J.B. Xia, J.L. Liu, F.H. Yang, Z.C. Niu, S.L. Feng, H.Z. Zheng, J. Appl. Phys. 90, 6151 (2001)

    Article  ADS  Google Scholar 

  23. S.S. Li, F.S. Bai, S.L. Feng, H.Z. Zheng, Proc. Natl. Acad. Sci. USA 98, 11847 (2001)

    Article  ADS  Google Scholar 

  24. F.M. Peeters, X.G. Wu, J.T. Devreese, Phys. Rev. B 33, 3926 (1986)

    Article  ADS  Google Scholar 

  25. M.H. Degani, G.A. Farias, Phys. Rev. B 42, 11950 (1990)

    Article  ADS  Google Scholar 

  26. K.D. Zhu, S.W. Gu, Phys. Rev. B 47, 12941 (1993)

    Article  ADS  Google Scholar 

  27. S. Mukhopadhyay, A. Chatterjee, J. Phys. Condens. Matter 8, 4017 (1996)

    Article  ADS  Google Scholar 

  28. S. Mukhopadhyay, A. Chatterjee, Phys. Rev. B 58, 2088 (1998)

    Article  ADS  Google Scholar 

  29. A.L. Vartanian, A.L. Asatryan, A.A. Kirakosyan, J. Phys. Condens. Matter 14, 13357 (2002)

    Article  ADS  Google Scholar 

  30. S.H. Chen, J.L. Xiao, Physica E, Low-Dimens. Syst. Nanostruct. 40, 2941 (2008)

    Article  ADS  Google Scholar 

  31. S.H. Chen, Physica E, Low-Dimens. Syst. Nanostruct. 43, 1007 (2011)

    Article  ADS  Google Scholar 

  32. S.H. Chen, Physica B, Condens. Matter 406, 2033 (2011)

    Article  ADS  Google Scholar 

  33. S.H. Chen, Physica B, Condens. Matter 405, 843 (2010)

    Article  ADS  Google Scholar 

  34. V.N. Stavrou, X. Hu, Phys. Rev. B 72, 075362 (2005)

    Article  ADS  Google Scholar 

  35. W.J. Huybrechts, J. Phys. C, Solid State Phys. 10, 3761 (1977)

    Article  ADS  Google Scholar 

  36. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SH. The Decoherence of GaAs Quantum Dot Qubit Due to Electron–Phonon Interactions. J Low Temp Phys 172, 310–316 (2013). https://doi.org/10.1007/s10909-013-0876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0876-8

Keywords

Navigation