Advertisement

Journal of Low Temperature Physics

, Volume 173, Issue 1–2, pp 36–44 | Cite as

Primary Thermometry in the Intermediate Coulomb Blockade Regime

  • A. V. FeshchenkoEmail author
  • M. Meschke
  • D. Gunnarsson
  • M. Prunnila
  • L. Roschier
  • J. S. Penttilä
  • J. P. Pekola
Article

Abstract

We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.

Keywords

Coulomb blockade Thermometry Tunnel junctions 

Notes

Acknowledgements

We acknowledge the availability of the facilities and technical support by Micronova Nanofabrication Center. We would like to thank A. Peltonen and N. Chekurov for technical assistance. We acknowledge financial support from the European Community FP7 Marie Curie Initial Training Networks Action (ITN) Q-NET 264034 and Tekes through project FinCryo (Grant No. 220/31/2010). This work has been supported in part by the EU 7th Framework Programme (FP7/2007-2013, Grant No. 228464 Microkelvin) and by the Academy of Finland though its LTQ CoE grant (project no. 250280).

References

  1. 1.
    D.V. Averin, K.K. Likharev, in SQUID ’85: Superconducting Quantum Interference Devices and Their Applications, ed. by H.D. Hahlbohm, H. Lubbig (de Gruyter, Berlin, 1986), pp. 197–202 Google Scholar
  2. 2.
    J.P. Pekola, K.P. Hirvi, J.P. Kauppinen, M.A. Paalanen, Phys. Rev. Lett. 73, 2903 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    T. Bergsten, T. Claeson, P. Delsing, J. Appl. Phys. 86(7), 3844 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    S. Devi, T. Bergsten, P. Delsing, Appl. Phys. Lett. 84(18), 3633 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    B. Fellmuth, C. Gaiser, J. Fischer, Meas. Sci. Technol. 17(10), R145 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    L. Spietz, K.W. Lehnert, I. Siddiqi, R.J. Schoelkopf, Science 300, 1929 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    L. Spietz, R.J. Schoelkopf, P. Pari, Appl. Phys. Lett. 89(18), 183123 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    S. Farhangfar, K. Hirvi, J. Kauppinen, J. Pekola, J. Toppari, D. Averin, A. Korotkov, J. Low Temp. Phys. 108, 191 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    M. Meschke, J.P. Pekola, F. Gay, R.E. Rapp, H. Godfrin, J. Low Temp. Phys. 134, 1119 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    E.A. Hoffmann, N. Nakpathomkun, A.I. Persson, H. Linke, H.A. Nilsson, L. Samuelson, Appl. Phys. Lett. 91(25), 252114 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    S. Gasparinetti, F. Deon, G. Biasiol, L. Sorba, F. Beltram, F. Giazotto, Phys. Rev. B 83(20), 201306 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    S. Gasparinetti, M.J. Martínez-Pérez, S. de Franceschi, J.P. Pekola, F. Giazotto, J. Appl. Phys. 100(25), 253502 (2012) Google Scholar
  13. 13.
    J.R. Prance, C.G. Smith, J.P. Griffiths, S.J. Chorley, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Phys. Rev. Lett. 102, 146602 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    L. Bitton, D.B. Gutman, R. Berkovits, A. Frydman, Phys. Rev. Lett. 106, 016803 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    M.M.A. Yajadda, K.H. Muller, K. Ostrikov, Phys. Rev. B 84, 235431 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    T.A. Fulton, G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987) ADSCrossRefGoogle Scholar
  17. 17.
    K. Gloos, P.J. Koppinen, J.P. Pekola, J. Phys. Condens. Matter 15(10), 1733 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    R. Bel, K. Behnia, C. Proust, P. van der Linden, D. Maude, S.I. Vedeneev, Phys. Rev. Lett. 92, 177003 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    M. Prunnila, M. Meschke, D. Gunnarsson, S. Enouz-Vedrenne, J.M. Kivioja, J.P. Pekola, J. Vac. Sci. Technol. B 28(5), 1026 (2010) CrossRefGoogle Scholar
  20. 20.
    M. Meschke, J. Engert, D. Heyer, J. Pekola, Int. J. Thermophys. 32, 1378 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. V. Feshchenko
    • 1
    Email author
  • M. Meschke
    • 1
  • D. Gunnarsson
    • 2
  • M. Prunnila
    • 2
  • L. Roschier
    • 3
  • J. S. Penttilä
    • 3
  • J. P. Pekola
    • 1
  1. 1.Low Temperature Laboratory, O.V. Lounasmaa LaboratoryAalto UniversityAaltoFinland
  2. 2.VTT Technical Research Centre of FinlandEspooFinland
  3. 3.Aivon OyHelsinkiFinland

Personalised recommendations