Skip to main content
Log in

Mechanical and Electrical Properties of (Cu0.5Tl0.5)-1223 Phase Added with Nano-Fe2O3

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting samples of type (Cu0.5Tl0.5)-1223 added with nano-Fe2O3 (x=0.0, 0.1, 0.2, 0.4, 0.6 and 1.0 wt.%) were prepared by solid-state reaction technique. The prepared samples were characterized using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) for phase analysis and microstructure examination. The elemental content of the prepared samples was determined using particle induced X-ray emission (PIXE), whereas the Oxygen-content of these samples was obtained using non Rutherford backscattering spectroscopy at 3 MeV proton beam. It was found that the Oxygen-content of (Cu0.5Tl0.5)-1223 phase was not affected with the addition of nano-Fe2O3. The electrical resistivity measurements showed that the superconducting transition temperature (T c ) increases up to x=0.2 wt.%, followed by a systematic decrease for x>0.2 wt.%. In addition, room temperature Vickers microhardness (H v ) measurements were carried out at different applied loads (0.49–2.94 N) to study the performance of the mechanical properties of samples. The experimental results of H v were analyzed using different models such as elastic, energy dissipation, energy balance and modified energy balance models. It has been found that the energy dissipation model is in a good agreement with the microhardness data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, F. Tateai, M. Kawamura, K. Ishida, S. Miyashita, T. Watanabe, Physica B 284–288, 1085 (2000)

    Article  Google Scholar 

  2. H. Ihara, K. Tokiwa, K. Tanaka, T. Tsukamoto, T. Watanabe, H. Yamamoto, A. Iyo, M. Tokumoto, M. Umeda, Physica C 282–287, 957 (1997)

    Article  Google Scholar 

  3. I. Karaca, O. Uzun, U. Kölemen, F. Yılmaz, O. Şahin, J. Alloys Compd. 476, 486 (2009)

    Article  Google Scholar 

  4. O. Uzun, U. Kölemen, S. Çelebi, N. Güçlü, J. Eur. Ceram. Soc. 25, 969 (2005)

    Article  Google Scholar 

  5. M. Muralidhar, K.N. Reddy, V.H. Babu, Phys. Stat. Sol (a) 126, 115 (1991)

    Article  ADS  Google Scholar 

  6. C. Veerender, V.R. Dumke, M. Nagabhooshanam, Phys. Status Solidi A 144, 299 (1994)

    Article  ADS  Google Scholar 

  7. A. Tampieri, G. Celotti, S. Guicciardi, C. Melandri, Mater. Chem. Phys. 42, 188 (1995)

    Article  Google Scholar 

  8. M. Ionescu, B. Zeimetz, S.X. Dou, Physica C 306, 213 (1998)

    Article  ADS  Google Scholar 

  9. S.M. Khalil, Phys. Status Solidi A 178, 731 (2000)

    Article  ADS  Google Scholar 

  10. S.M. Khalil, J. Phys. Chem. Solids 62, 457 (2001)

    Article  ADS  Google Scholar 

  11. U. Kölemen, O. Uzun, M. Yilmazlar, N. Güçlü, J. Alloys Compd. 415, 300 (2006)

    Article  Google Scholar 

  12. M. Yilmazlar, H.A. Centinkara, M. Nursoy, O. Ozturk, C. Terzioglu, Physica C 442, 101 (2006)

    Article  ADS  Google Scholar 

  13. R. Awad, A.I. Abou-Aly, M. Kamal, M. Anas, J. Supercond. Nov. Magn. 24, 1947 (2011)

    Article  Google Scholar 

  14. Y.C. Guo, Y. Tanaka, T. Kuroda, S.X. Dou, Z.Q. Yang, Physica C 311, 65 (1999)

    Article  ADS  Google Scholar 

  15. E. Guilmeau, B. Andrzejewski, J.G. Noudem, Physica C 387, 382 (2003)

    Article  ADS  Google Scholar 

  16. W. Wei, J. Schwartz, K.C. Goretta, U. Balachandran, A. Bhargava, Physica C 298, 297 (1998)

    Article  Google Scholar 

  17. Z.Y. Jia, H. Tang, Z.Q. Yang, Y.T. Xing, Y.Z. Wang, G.W. Qiao, Physica C 337, 130 (2000)

    Article  ADS  Google Scholar 

  18. T. Haugan, W. Wong-Ng, L.P. Cook, H.J. Brown, L. Swartzendruber, D.T. Shaw, Physica C 335, 129 (2000)

    Article  ADS  Google Scholar 

  19. S. Sengupta, V.R. Todt, P. Kostic, Y.L. Chen, M.T. Lanagan, K.C. Goretta, Physica C 264, 34 (1996)

    Article  ADS  Google Scholar 

  20. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Alloys Compd. 486, 733 (2009)

    Article  Google Scholar 

  21. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Supercond. Nov. Magn. 24, 1463 (2011)

    Article  Google Scholar 

  22. R. Awad, J. Supercond. Nov. Magn. 21, 461 (2008)

    Article  Google Scholar 

  23. R. Awad, A.I. Abou-Aly, M.M.H. Abdel Gawad, I. G-Eldeen, J. Supercond. Nov. Magn. 25, 739 (2012)

    Article  Google Scholar 

  24. L.E. Rehn, Nucl. Instrum. Methods Phys. Res. B 64, 161 (1992)

    Article  ADS  Google Scholar 

  25. N.H. Mohammed, M. Roumié, H.A. Motaweh, R. Awad, D. El-Said Bakeer, B. Nsouli, J. Supercond. Nov. Magn. 23, 465 (2010)

    Article  Google Scholar 

  26. A.I. Abou-Aly, N.H. Mohammed, M. Roumié, A. El Khatib, R. Awad, S.A. Nour El Dein, J. Supercond. Nov. Magn. 22, 495 (2009)

    Article  Google Scholar 

  27. M. Roumié, R. Awad, I.H. Ibrahim, A. Zein, K. Zahraman, B. Nsouli, Nucl. Instrum. Methods Phys. Res. B 266, 133 (2008)

    Article  ADS  Google Scholar 

  28. R. Awad, M. Roumié, A.I. Abou-Aly, S.A. Mahmoud, M.M. Barakat, J. Supercond. Nov. Magn. 25, 273 (2012)

    Article  Google Scholar 

  29. N. Hassan, N.A. Khan, J. Alloys Compd. 471, 39 (2009)

    Article  Google Scholar 

  30. M. Annabi, A. M’chirgui, F. Ben Azzouz, M. Zouaoui, M. Ben Salem, Physica C 40, 25 (2004)

    Article  ADS  Google Scholar 

  31. I. Karaca, S. Çelebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100 (2003)

    Article  ADS  Google Scholar 

  32. S.Y. Yahya, M.H. Jumali, C.H. Lee, R. Abd-Shukor, J. Mater. Sci. 39, 7125 (2004)

    Article  ADS  Google Scholar 

  33. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Supercond. Nov. Magn. 25, 1441 (2012)

    Article  Google Scholar 

  34. A. Ghattas, M. Annabi, M. Zouaoui, F. Ben Azzouz, M. Ben Salem, Physica C 468, 33 (2008)

    Article  ADS  Google Scholar 

  35. W. Kong, R. Abd-Shukor, J. Supercond. Nov. Magn. 23, 257 (2010)

    Article  Google Scholar 

  36. B.A. Albiss, I.M. Obaidat, M. Gharaibeh, H. Ghamlouche, S.M. Obeidat, Solid State Commun. 150, 1542 (2010)

    Article  ADS  Google Scholar 

  37. M. Mumtaz, N.A. Khan, R. Nawaz, J. Supercond. Nov. Magn. 23, 565 (2010)

    Article  Google Scholar 

  38. P. Badica, A. Iyo, A. Crisan, H. Ihara, Supercond. Sci. Technol. 15, 975 (2002)

    Article  ADS  Google Scholar 

  39. N. Moutalibi, A. M’chirgui, J. Noudem, Physica C 470, 568 (2010)

    Article  ADS  Google Scholar 

  40. A.F. Gurbich, Nucl. Instrum. Methods Phys. Res. B 129, 311 (1997)

    Article  ADS  Google Scholar 

  41. A.R. Ramos, A. Paul, L. Rijniers, M.F. da Silva, J.C. Soares, Nucl. Instrum. Methods Phys. Res. B 190, 95 (2002)

    Article  ADS  Google Scholar 

  42. A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, J. Alloys Compd. 481, 462 (2009)

    Article  Google Scholar 

  43. H. Salamati, P. Kameli, Solid State Commun. 125, 407 (2003)

    Article  ADS  Google Scholar 

  44. H.K. Barik, S.K. Ghorai, S. Bhattacharya, D. Kilian, B.K. Chaudhuri, J. Mater. Res. 15, 1076 (2000)

    Article  ADS  Google Scholar 

  45. A.I. Abou-Aly, M.M.H. Abdel Gawad, R. Awad, I. G-Eldeen, J. Supercond. Nov. Magn. 24, 2077 (2011)

    Article  Google Scholar 

  46. C.E. Foerster, E. Lima, P. Rodrigues Jr., F.C. Serbena, C.M. Lepienski, M.P. Cantão, A.R. Jurelo, X. Obradors, Braz. J. Phys. 38, 341 (2008)

    Article  ADS  Google Scholar 

  47. A. Murakami, K. Katagari, K. Noto, K. Kasaba, Y. Sohoji, M. Muralidhar, N. Sakai, M. Murakami, Physica C 378, 381, 794 (2002)

    Google Scholar 

  48. J. Gong, J. Wu, Z. Guan, Mater. Lett. 38, 197 (1999)

    Article  Google Scholar 

  49. K. Sangwal, B. Surowska, Mater. Res. Innov. 7, 91 (2003)

    Google Scholar 

  50. R. Tickoo, R.P. Tandon, K.K. Bamzai, P.N. Kotru, Mater. Chem. Phys. 80, 446 (2003)

    Article  Google Scholar 

  51. A.A. Elmustafa, D.S. Stone, J. Mech. Phys. Solids 51, 357 (2003)

    Article  ADS  MATH  Google Scholar 

  52. V.S. Bobrov, Mater. Sci. Eng. A 164, 146 (1993)

    Article  Google Scholar 

  53. A. Leenders, M. Ullrich, H.C. Freyhardt, Physica C 279, 173 (1997)

    Article  ADS  Google Scholar 

  54. Z. Li, A. Ghosh, A.S. Kobayashi, J. Am. Ceram. Soc. 72, 904 (1989)

    Article  Google Scholar 

  55. F. Fröhlich, P. Grau, W. Grellmann, Phys. Status Solidi 42, 79 (1977)

    Article  ADS  Google Scholar 

  56. E.O. Bernhardt, Z. Metall. 33, 135 (1941)

    Google Scholar 

  57. S.M. Khalil, Smart Mater. Struct. 14, 804 (2005)

    Article  ADS  Google Scholar 

  58. J. Gong, Y. Li, J. Mater. Sci. 35, 209 (2000)

    Article  ADS  Google Scholar 

  59. K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Appl. Surf. Sci. 133, 195 (1998)

    Article  ADS  Google Scholar 

  60. O. Uzun, T. Karaaslan, M. Gogebakan, M. Keskin, J. Alloys Compd. 376, 149 (2004)

    Article  Google Scholar 

  61. H.A. Cetinkara, M. Yilmazlar, O. Ozturk, M. Nursoy, C. Terzioglu, J. Phys. Conf. Ser. 153, 012038 (2009)

    Article  ADS  Google Scholar 

  62. D. Tabor, The Hardness of Metals (Clarendon, Oxford, 1951)

    Google Scholar 

  63. B.Y. Farber, N.S. Sidorov, V.I. Kulakov, A.Y. Lunin, A.N. Izotov, G.A. Emel’chenko, V.S. Bobrov, L.S. Fomenko, V.D. Natsik, S.V. Lubenets, Superconductivity 4, 2296 (1991)

    Google Scholar 

  64. B.Y. Farber, N.S. Sidorov, V.I. Kulakov, A.Y. Lunin, A.N. Izotov, G.A. Emel’chenko, V.S. Bobrov, L.S. Fomenko, V.D. Natsik, S.V. Lubenets, Compounds 415, 300 (2006)

    Article  Google Scholar 

  65. K. Nihara, R. Movena, D.P.H. Hasselman, J. Mater. Sci. 1, 13 (1982)

    Google Scholar 

  66. B.R. Lawn, T.R. Wilshaw, J. Mater. Sci. 10, 1049 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed in the superconductivity and metallic-glass lab, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt. The authors are grateful for the support of Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, Beirut, Lebanon for PIXE and RBS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Awad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammed, N.H., Abou-Aly, A.I., Awad, R. et al. Mechanical and Electrical Properties of (Cu0.5Tl0.5)-1223 Phase Added with Nano-Fe2O3 . J Low Temp Phys 172, 234–255 (2013). https://doi.org/10.1007/s10909-013-0867-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0867-9

Keywords

Navigation