Skip to main content
Log in

Thermodynamic Properties of Ultracold Bose Gas: Transition Exponents and Universality

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report exact numerical calculations of the chemical potential, condensate fraction and specific heat of N non-interacting bosons confined in an isotropic harmonic oscillator trap in one, two and three dimensions, as also for interacting bosons in a 3D trap. Quasi phase transitions (QPT) are observed in all these cases, including in one-dimension, as shown by a rapid change of several thermodynamic quantities at the transition point. The change becomes more rapid as N increases in 2D and 3D cases. However with increase in N, the sudden change in the nature of specific heat, gets gradually wiped out in 1D, while it becomes more drastic in 2D and 3D. But the sudden changes in the condensate fraction and chemical potential become more drastic as N increases, even in 1D. This shows that a QPT is possible in 1D also. We define the transition exponent, which characterizes the nature of a thermodynamic quantity at the transition point of a quasi phase transition, and evaluate them by careful numerical calculations, very near the transition temperature. These exponents are found to be independent of the size of the system. They are also the same for interacting and non-interacting bosons. These demonstrate the universality property of the transition exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  2. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  3. V. Bagnato, D. Kleppner, Phys. Rev. A 44, 7439 (1991)

    Article  ADS  Google Scholar 

  4. V.I. Yukalov, Phys. Rev. A 72, 033608 (2005)

    Article  ADS  Google Scholar 

  5. W. Ketterle, N.J. van Druten, Phys. Rev. A 54, 656 (1996)

    Article  ADS  Google Scholar 

  6. R.K. Pathria, Statistical Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1996)

    MATH  Google Scholar 

  7. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  8. V. Bagnato, D.E. Pritchard, D. Kleppner, Phys. Rev. A 35, 4354 (1987)

    Article  ADS  Google Scholar 

  9. J.L. Roberts et al., Phys. Rev. Lett. 86, 4211 (2001)

    Article  ADS  Google Scholar 

  10. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996)

    Article  ADS  Google Scholar 

  11. R. Napolitano, J. De Luca, V.S. Bagnato, G.C. Marques, Phys. Rev. A 55, 3954 (1997)

    Article  ADS  Google Scholar 

  12. A. Biswas, J. Phys. B 42, 215302 (2009)

    Article  ADS  Google Scholar 

  13. J.M. Yeomans, Statistical Mechanics of Phase Transitions (Clarendon Press, Oxford, New York, 1992)

    Google Scholar 

  14. T.K. Das, S. Canuto, A. Kundu, B. Chakrabarti, Phys. Rev. A 75, 042705 (2007)

    Article  ADS  Google Scholar 

  15. D. Blume, C.H. Greene, Phys. Rev. A 63, 063601 (2001)

    Article  ADS  Google Scholar 

  16. A. Kundu, B. Chakrabarti, T.K. Das, S. Canuto, J. Phys. B 40, 2225 (2007)

    Article  ADS  Google Scholar 

  17. T.K. Das, B. Chakrabarti, Phys. Rev. A 70, 063601 (2004)

    Article  ADS  Google Scholar 

  18. B. Chakrabarti, A. Kundu, T.K. Das, J. Phys. B 38, 2457 (2005)

    Article  ADS  Google Scholar 

  19. A. Biswas, T.K. Das, J. Phys. B 41, 231001 (2008)

    Article  ADS  Google Scholar 

  20. B. Chakrabarti, T.K. Das, P.K. Debnath, Phys. Rev. A 79, 053629 (2009)

    Article  ADS  Google Scholar 

  21. T.K. Das, A. Kundu, S. Canuto, B. Chakrabarti, Phys. Lett. A 373, 258 (2009)

    Article  ADS  Google Scholar 

  22. J.L. Ballot, M. Fabre de la Ripelle, Ann. Phys. 127, 62 (1980)

    Article  ADS  Google Scholar 

  23. M. Fabre de la Ripelle Ann. Phys. 147, 281 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

    MATH  Google Scholar 

  25. T.K. Das, H.T. Coelho, M. Fabre de la Ripelle, Phys. Rev. C 26, 2281 (1982)

    Article  ADS  Google Scholar 

  26. B. Chakrabarti, T.K. Das, Phys. Rev. A 78, 063608 (2008)

    Article  ADS  Google Scholar 

  27. B. Chakrabarti, T.K. Das, Phys. Rev. A 81, 015601 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Parongama Sen for drawing our attention to the critical exponent and universality, as well as for useful discussions. S.G. acknowledges CSIR (India) for a Senior Research Fellowship (Sanction No.: 09/028(0762)/2010-EMR-I). TKD acknowledges DST (India) for financial assistance through the USERS program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, S., Das, T.K. & Biswas, A. Thermodynamic Properties of Ultracold Bose Gas: Transition Exponents and Universality. J Low Temp Phys 172, 184–201 (2013). https://doi.org/10.1007/s10909-013-0860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0860-3

Keywords

Navigation