Skip to main content
Log in

Excess Conductivity Analysis of Tl1−x Y x Ba2Ca2Cu3O10−δ Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Excess conductivity analyses of resistivity data of Tl1−x Y x Ba2Ca2Cu3O10−δ (x=0, 0.04, 0.06, 0.08, 0.1) samples have been carried out by following Lawrence & Doniach (LD) and Maki-Thompson (MT) models. In the critical regime important superconductivity parameters have been elucidated by employing Ginzburg-Landau number N G of Ginzburg Landau theory. Our samples have shown a decrease in the T c (R=0) and magnitude of diamagnetism with increased Y-doping. The cell parameters and volume of the unit cell increase with doping of Y+3 in Tl1−x Y x Ba2Ca2Cu3O10−δ (x=0, 0.04, 0.06, 0.08, 0.1) which shows a decrease in the density of charge carriers in the conducting CuO2 planes. Since the Fermi vectors of the carriers, K F=[3π 2 N/V]1/3=[3π 2 n]1/3, their coherence length along the c-axis, ξ c=ħK F/2mΔ, and the Fermi velocity, V F=ħK F/m depend on density of mobile charge carriers, the doping of Y+3 suppresses it and hence the superconductivity parameters. We have confirmed these conjectures with the excess conductivity analyses (FIC) of our conductivity data. The FIC analysis of conductivity data has shown a decrease in the values of ξ c, V F, B c(0), B c1(0) and J c(0) with increase doping of Y (except for the samples with x=0.04). The width of two dimensional conductivity regimes is shrunken with increased Y-doping. From these studies it is concluded that presence of Y+3 in the unit cell of TlBa2Ca2Cu3O10−δ impedes the flow of the mobile charge carriers to the conducting CuO2 planes which induce suppression in the superconductivity parameters. The studies also stress the vital role of mobile charge carriers in the mechanism of high temperature superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a
Fig. 5b
Fig. 5c
Fig. 5d
Fig. 5e

Similar content being viewed by others

References

  1. N.A. Khan, A.A. Khurram, Appl. Phys. Lett. 86, 152502 (2005)

    Article  ADS  Google Scholar 

  2. N.A. Khan, G. Husnain, Physica C 436, 51 (2006)

    Article  ADS  Google Scholar 

  3. M. Mumtaz, N.A. Khan, F. Ashraf, J. Supercond. Nov. Magn. 24, 1985–1989 (2011) and references there in

    Article  Google Scholar 

  4. A.L. Solov’ev, V.M. Dmitriev, Low Temp. Phys. 35, 169 (2009)

    Article  ADS  Google Scholar 

  5. A.L. Solovjov, V.M. Dmitriev, Low Temp. Phys. 32, 99 (2006)

    Article  ADS  Google Scholar 

  6. L.G. Aslamazov, A.L. Larkin, Phys. Lett. A 26, 238 (1968)

    Article  ADS  Google Scholar 

  7. W.E. Lawrence, S. Doniach, in Proceedings of the Twelfth International Conference on Low Temperature Physics, ed. by E. Kanda (Keigaku, Tokyo, 1971), p. 361

    Google Scholar 

  8. K. Maki, Prog. Theor. Phys. 39, 897 (1968)

    Article  ADS  Google Scholar 

  9. R.S. Thompson, Phys. Rev. B 1, 327 (1970)

    Article  ADS  Google Scholar 

  10. S. Hikami, A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988)

    Article  ADS  Google Scholar 

  11. B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hammond, A. Kapitulnik, J.M. Grabeal, Phys. Rev. B 37, 7861 (1988)

    Article  ADS  Google Scholar 

  12. A.L. Solovjov, H.-U. Habermeier, T. Haage, Fiz. Nizk. Temp. 28, 24 (2002). Low Temp. Phys. 28, 17 (2002)

    Google Scholar 

  13. A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Physica C 264, 255 (1996)

    Article  ADS  Google Scholar 

  14. P.P. Fietas, C.C. Tsuei, T.S. Plaskett, Phys. Rev. B 36, 833 (1987)

    Article  ADS  Google Scholar 

  15. M. Ausloos, C. Laurent, Phys. Rev. B 37, 611 (1988)

    Article  ADS  Google Scholar 

  16. G. Balestrino, Phys. Rev. B 46, 14919 (1992)

    Article  ADS  Google Scholar 

  17. A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Physica C 255, 319 (1995)

    Article  ADS  Google Scholar 

  18. U.C. Upreti, A.V. Narlikar, Solid State Commun. 100(9), 615 (1996)

    Article  ADS  Google Scholar 

  19. A. Poddar, P. Mandal, A.N. Das, B. Ghosh, P. Choudhury, Physica C 161, 567 (1989)

    Article  ADS  Google Scholar 

  20. F. Vidal, J.A. Veira, J. Maza, J.J. Ponte, F. Garcia-Alvarado, E. Moran, J. Amador, C. Cascales, A. Castro, M.T. Casais, I. Rasines, Physica C 156, 807 (1988)

    Article  ADS  Google Scholar 

  21. S. Ravi, V.S. Bai, Physica C 182, 345 (1991)

    Article  ADS  Google Scholar 

  22. P. Mandal, A. Poddar, A.N. Das, B. Gosh, P. Choudhary, Physica C, Supercond. 169, 43 (1990)

    Article  ADS  Google Scholar 

  23. M.O. Mun, M.K. Jon, Phys. Rev. B 48, 6073 (1993)

    Article  Google Scholar 

  24. S.H. Han, J. Axnas, B.R. Zhao, O. Rapp, Physica C 408, 679 (2004)

    Article  ADS  Google Scholar 

  25. H. Ihara, A. Iyo, K. Tanaka, K. Tokiwa, K. Ishida, N. Terada, M. Tokumoto, Y. Sekita, T. Tsukamoto, T. Wtanabe, M. Umeda, Physica C 282, 1973 (1997)

    Article  ADS  Google Scholar 

  26. H. Kotigawa, Y. Tokunaga, K. Ishida, G.Q. Zang, Y. Kitaoka, K. Asayama, H. Kito, A. Iyo, H. Ihara, K. Tanaka, K. Tokiwa, T. Wtanabe, J. Phys. Chem. Solids 62, 171 (2001)

    Article  ADS  Google Scholar 

  27. N.A. Khan, N. ul-Hassan, Mater. Chem. Phys. 105, 298 (2007)

    Article  Google Scholar 

  28. M. Mumtaz, N.A. Khan, Physica B 404, 3973 (2009)

    Article  ADS  Google Scholar 

  29. N.A. Khan, N. Hassan, Physica C 466, 106 (2007)

    Article  ADS  Google Scholar 

  30. N. Hassan, N.A. Khan, J. Alloys Compd. 464, 550 (2008)

    Article  Google Scholar 

  31. S.H. Han, O. Rapp, Solid State Commun. 94, 661 (1995)

    Article  ADS  Google Scholar 

  32. A.L. Solovjov, V.M. Dmitriev, Low Temp. Phys. 32, 99 (2006)

    Article  ADS  Google Scholar 

  33. A.L. Solovjov, H.-U. Habermeier, T. Haage, Fiz. Nizk. Temp. 28, 144 (2002). Low Temp. Phys. 28, 99 (2002)

    Google Scholar 

  34. A.L. Solovjov, V.M. Dmitriev, Low Temp. Phys. 35(3), 169 (2009)

    Article  ADS  Google Scholar 

  35. A.L. Solovjov, V.M. Dmitriev, H.-U. Habermeier, Phys. Rev. B 55, 8551 (1997)

    Article  ADS  Google Scholar 

  36. M.-O. Mun, S.-I. Lee, S.-H. Suck Salk, H.J. Shin, M.K. Joo, Phys. Rev. B 48, 6703 (1993)

    Article  ADS  Google Scholar 

  37. N. Mori, J.A. Wilson, H. Ozaki, Phys. Rev. B 45(10), 633 (1992)

    Google Scholar 

Download references

Acknowledgements

The Higher Education Commission (HEC) of Pakistan (project No. 20-1482/R&D/09-1472) and Internal Center for Theoretical Physics (ICTP) (project No. PRJ-27) are acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawazish A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, N.A., Abbas, S. & Husnain Gardezi, S.M. Excess Conductivity Analysis of Tl1−x Y x Ba2Ca2Cu3O10−δ Superconductors. J Low Temp Phys 172, 70–83 (2013). https://doi.org/10.1007/s10909-013-0859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0859-9

Keywords

Navigation