Skip to main content
Log in

The Nanostructures Produced by Laser Ablation of Metals in Superfluid Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The coagulation of impurities in superfluid helium, in contrast to that in all other liquids where spherical colloid particles are usually produced, led to producing thin and long nanowires with regular internal structure. This is due to the presence in HeII of quasi one-dimensional quantized vortices serving as condensation nuclei and providing a catalyzing effect on the process of any impurities coagulation. The metal was introduced into superfluid helium by laser ablation of targets made of gold, copper, nickel, permalloy, indium, lead, tin and bismuth immersed in liquid HeII. For all of these metals, the formation of thin (about 8 nm in diameter), long high-quality nanowires was observed after laser ablation. The structure of nanowires as well as of micron-sized metallic spheres, appeared as products at high laser pulse energy, providing evidence that they were formed via molten state. The spheres are metastable, and under damage of their surface, thousands of nanoballs emerge from their interior. The hollow shells left after this event are similar to those found as the products of laser ablation in normal fluids. The metal ablation into HeII bulk from thin film was found much less effective then that from thick foils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Sasaki, N. Takada, Liquid-phase laser ablation. Pure Appl. Chem. 82, 1317–1327 (2010)

    Article  Google Scholar 

  2. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, Formation of stable platinum nanoparticles by laser ablation in water. J. Phys. Chem. B 107, 4218–4223 (2003)

    Article  Google Scholar 

  3. E.B. Gordon, A.V. Karabulin, V.I. Matyushenko, V.D. Sizov, I.I. Khodos, The role of vortices in the process of impurity nanoparticles coalescence in liquid helium. Chem. Phys. Lett. 519–520, 64 (2012)

    Article  Google Scholar 

  4. P. Moroshkin, V. Lebedev, B. Grobety, C. Neururer, E.B. Gordon, A. Weis, Nanowire formation by gold nano-fragment coalescence on quantized vortices in He II. Europhys. Lett. 90, 34002 (2010)

    Article  ADS  Google Scholar 

  5. V. Lebedev, P. Moroshkin, B. Groberty, E. Gordon, A. Weis, Formation of metallic nanowires by laser ablation in liquid helium. J. Low Temp. Phys. 165, 166 (2011)

    Article  ADS  Google Scholar 

  6. E.B. Gordon, A.V. Karabulin, V.I. Matyushenko, V.D. Sizov, I.I. Khodos, Structure of metallic nanowires and nanoclusters formed in superfluid helium. JETP Lett. 112, 1061 (2011)

    Article  Google Scholar 

  7. E.B. Gordon, A.V. Karabulin, V.I. Matyushenko, V.D. Sizov, I.I. Khodos, Electric properties of metallic nanowires obtained in quantum vortices of superfluid helium. Low Temp. Phys. 36, 590 (2010)

    Article  ADS  Google Scholar 

  8. E.B. Gordon, A.V. Karabulin, V.I. Matyushenko, V.D. Sizov, I.I. Khodos, The electrical conductivity of bundles of superconducting nanowires produced by laser ablation of metals in superfluid helium. Appl. Phys. Lett. 101, 052605 (2012)

    Article  ADS  Google Scholar 

  9. E.B. Gordon, R. Nishida, R. Nomura, Y. Okuda, The filament formation by impurities embedding into superfluid helium. JETP Lett. 85, 581 (2007)

    Article  Google Scholar 

  10. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  11. D. Jin, H.J. Maris, A study of the motion of particles in superfluid helium-4 and interactions with vortices. J. Low Temp. Phys. 162, 329–339 (2011)

    Article  ADS  Google Scholar 

  12. D.D. Awschalom, K.W. Schwarz, Observation of a remanent vortex-line density in superfluid helium. Phys. Rev. Lett. 52, 49–52 (1984)

    Article  ADS  Google Scholar 

  13. A. Golov, Private communication

  14. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, Formation of gold nanonetworks and small gold nanoparticles by irradiation of intense pulsed laser onto gold nanoparticles. J. Phys. Chem. B 107, 12589 (2003)

    Article  Google Scholar 

  15. S.W. Van Sciver, Transient heat transport in He II. Cryogenics 19, 385 (1979)

    Article  Google Scholar 

  16. G.P. Bewley, Using frozen hydrogen particles to observe rotating and quantized flows in liquid helium. PhD dissertation, Yale University (2006)

  17. M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, Visualization of superfluid helium flow. J. Phys. Soc. Jpn. 77, 111007 (2008)

    Article  ADS  Google Scholar 

  18. E.B. Gordon, Y. Okuda, Catalysis of impurities coalescence by quantized vortices in superfluid helium with nanofilament formation. Low Temp. Phys. 35, 209 (2009)

    Article  ADS  Google Scholar 

  19. M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Suppression of ablation in femtosecond double-pulse experiments. Phys. Rev. Lett. 103, 195002 (2009)

    Article  ADS  Google Scholar 

  20. H.Q. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X.Y. Li, Y. Bando, D. Golberg, Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 19102 (2011)

    Article  Google Scholar 

  21. S. Chandrasekar, M.M. Chaudhri, The explosive disintegration of Prince Rupert’s drops. Philos. Mag., B 70, 1195–1218 (1994)

    Article  Google Scholar 

  22. R. Honeycombe, The Plastic Deformation of Metals (Cambridge University Press, Cambridge, 1968)

    Google Scholar 

  23. Z. Yan, R. Bao, R.N. Wright, D.B. Chrisey, Hollow nanoparticle generation on laser-induced cavitation bubbles via bubble interface pinning. Appl. Phys. Lett. 97, 124106 (2010)

    Article  ADS  Google Scholar 

  24. G. Viau, V. Colliere, L.-M. Lacroix, G.A. Shafeev, Internal structure of Al hollow nanoparticles generated by laser ablation in liquid ethanol. Chem. Phys. Lett. 501, 419–422 (2011)

    Article  ADS  Google Scholar 

  25. S. Grebenev, J.P. Toennies, A.F. Vilesov, Superfluidity within a small helium-4 cluster: the microscopic Andronikashvili experiment. Science 279, 2083 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to V.T. Volkov for producing the permalloy film target. This work was partially supported by the Russian Foundation for Basic Research, projects #10-03-00562 and #11-02-12048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene B. Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, E.B., Karabulin, A.V., Matyushenko, V.I. et al. The Nanostructures Produced by Laser Ablation of Metals in Superfluid Helium. J Low Temp Phys 172, 94–112 (2013). https://doi.org/10.1007/s10909-012-0849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0849-3

Keywords

Navigation