Skip to main content
Log in

Electric Field Effect on State Energies and Transition Frequency of a Strong-Coupling Polaron in an Asymmetric Quantum Dot

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study the ground and the first excited states’ energies and the corresponding transition frequency of a strong-coupling polaron in an asymmetric quantum dot (AQD). The effects of the electric field, the transverse and the longitudinal effective confinement lengths and the electron-phonon coupling strength are taken into account by using a variational method of the Pekar type. It is found that the ground and the first excited states’ energies and the transition frequency are decreasing functions of the electric field. They will increase rapidly with decreasing the transverse and longitudinal effective confinement lengths. The transition frequency is an increasing function of the electron-phonon coupling strength, whereas the energies are decreasing ones of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N.K. Datta, M. Ghosh, Eur. Phys. J. B 80, 95 (2011)

    Article  ADS  Google Scholar 

  2. A.I. Yakimov, A.V. Dvurechenskii, G.M. Min’kov, A.A. Sherstobitov, A.I. Nikiforov, A.A. Bloshkin, J. Exp. Theor. Phys. 100, 722 (2005)

    Article  ADS  Google Scholar 

  3. F. Arciprete, M. Fanfoni, F. Patella, A.D. Della Pia, A. Balzarotti, Phys. Rev. B 81, 165306 (2010)

    Article  ADS  Google Scholar 

  4. S. Kang, Y.-H. Kil, B.G. Park, C.-J. Choi, T.S. Kim, T.S. Jeong, K.-H. Shim, Electro. Mater. Lett. 7, 121 (2011)

    Article  ADS  Google Scholar 

  5. S.S. Li, J.B. Xia, Appl. Phys. Lett. 91, 092119 (2007)

    Article  ADS  Google Scholar 

  6. F. Baruffa, P. Stano, J. Fabian, Phys. Rev. Lett. 104, 126401 (2010)

    Article  ADS  Google Scholar 

  7. W. Zhang, J. Gao, H.-Z. Guo, C.-Y. Zhang, Eur. Phys. J. B 79, 351 (2011)

    Article  ADS  Google Scholar 

  8. H.C. Tian, J.L. Xiao, J. Neimenguu. Natl. Univ. 23(5), 494 (2008)

    Google Scholar 

  9. S.S. Li, K. Chang, J.B. Xia, Phys. Rev. B 68, 245306 (2003)

    Article  ADS  Google Scholar 

  10. K. Sellami, S. Jaziri, Physica E 26, 143 (2005)

    Article  ADS  Google Scholar 

  11. E. Sadeghi, G. Rezaie, Pramāna 75, 749 (2010)

    Article  ADS  Google Scholar 

  12. R.T. Senger, B. Kozal, A. Chatterjee, A. Ercelebi, Eur. Phys. J. B 78, 525 (2010)

    Article  ADS  Google Scholar 

  13. Z.W. Wang, S.S. Li, J. Appl. Phys. 110, 043512 (2011)

    Article  ADS  Google Scholar 

  14. W. Xiao, J.L. Xiao, Int. J. Mod. Phys. B 25, 3485 (2011)

    Article  ADS  MATH  Google Scholar 

  15. L.D. Landau, S.I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946)

    Google Scholar 

  16. S.I. Pekar, Untersuchungen über die Elektronen-Theorie der Kristalle (Akademie Verlag, Berlin, 1954)

    Google Scholar 

  17. E. Kartheuser, R. Evrard, J. Devreese, Phys. Rev. Lett. 22, 94 (1969)

    Article  ADS  Google Scholar 

  18. N. Tokuda, H. Kato, J. Phys. C 20, 3021 (1987)

    Article  ADS  Google Scholar 

  19. A. Chatterjee, Phys. Rev. B 41, 1668 (1990)

    Article  ADS  Google Scholar 

  20. C.Y. Chen, P.W. Jin, Phys. Rev. B 48, 15905 (1993)

    Article  ADS  Google Scholar 

  21. K.D. Zhu, T. Kobayashi, Phys. Lett. A 190, 337 (1994)

    Article  ADS  Google Scholar 

  22. J. El Khamkhami, E. Feddi, E. Assaid, F. Dujardin, B. Stebe, M. El Haouari, Physica E 25, 366 (2005)

    Article  ADS  Google Scholar 

  23. A.L. Vartanian, M.A. Yeranosyan, A.A. Kirakosyan, Physica B 390, 256 (2007)

    Article  ADS  Google Scholar 

  24. W.F. Xie, Superlattices Microstruct. 50, 91 (2011)

    Article  ADS  Google Scholar 

  25. J.L. Xiao, J. Low Temp. Phys. 168, 297 (2012)

    Article  ADS  Google Scholar 

  26. J.W. Yin, J.L. Xiao, Y.F. Yu, Z.W. Wang, Chin. Phys. B 18, 446 (2009)

    Article  ADS  Google Scholar 

  27. N. Kervan, T. Altanhan, A. Chatterjee, Phys. Lett. A 315, 280 (2003)

    Article  ADS  Google Scholar 

  28. Y.H. Ren, Q.H. Chen, Z.K. Jiao, Acta. Phys. Soc. 7, 598 (1998)

    Google Scholar 

  29. B.S. Kandemir, A. Cetin, J. Phys. Condens. Matter 17, 667 (2003)

    Article  ADS  Google Scholar 

  30. J.K. Sun, H.J. Li, J.L. Xiao, Physica B 404, 1961 (2009)

    Article  ADS  Google Scholar 

  31. Z.W. Wang, J.L. Xiao, Acta Phys. Soc. 56, 678 (2007)

    Google Scholar 

  32. H.J. Li, J.K. Sun, J.L. Xiao, Chin. Phys. B 19, 010314 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China under Grant No. 10964005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, JL. Electric Field Effect on State Energies and Transition Frequency of a Strong-Coupling Polaron in an Asymmetric Quantum Dot. J Low Temp Phys 172, 122–131 (2013). https://doi.org/10.1007/s10909-012-0848-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0848-4

Keywords

Navigation