Skip to main content
Log in

Temperature and Frequency Dependent Dielectric Properties of Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ Bulk Superconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The temperature and frequency dependent dielectric properties of polycrystalline Cd-doped Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ (y=0,0.25,0.5,0.75) bulk superconductor samples are investigated. The zero resistivity critical temperature {T c(R=0)} has decreased and normal state resistivity has increased with the increase of Cd-doping in Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ samples. The dielectric properties such as dielectric constants (ε′,ε″), dielectric loss tangent (tanδ) and ac-conductivity (σ ac ) are investigated by measuring the capacitance (C) and conductance (G) in the frequency range of 10 KHz to 10 MHz at different temperature from 80 K to 300 K. The negative capacitance (NC) is observed in all Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ samples. The large values of NC observed at lower frequencies and temperatures may be due to reduced thermal vibrations and enhanced polarizability of the material. The effect of Cd-doping on bulk properties, dc-resistivity (ρ) and ac-electrical conductivity (σ ac ) of these superconductor samples are investigated. The polarization in Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ samples is most likely arising from the displacement of charges in CuO2/CdO2 planes relative to the static charges at Ba2+, Tl3+, and Cu2+ sites in Cu0.5Tl0.5Ba2O4−δ charge reservoir layers by external applied field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Park, R.L. Synder, J. Am. Ceram. Soc. 78, 3171 (1995)

    Article  Google Scholar 

  2. N.A. Khan, M. Mumtaz, A.A. Khurram, J. Appl. Phys. 104, 033916 (2008)

    Article  ADS  Google Scholar 

  3. P. Ben Ishai, E. Sader, Yu. Feldman, I. Felner, M. Weger, J. Supercond. 18, 455 (2005)

    Article  ADS  Google Scholar 

  4. S. Cavdar, H. Koralay, N. Tugluoglu, A. Gunen, Supercond. Sci. Technol. 18, 1204 (2005)

    Article  ADS  Google Scholar 

  5. P.S. Prabhu, U.V. Varadaraju, Phys. Rev. B 53, 14637 (1996) and references therein

    Article  ADS  Google Scholar 

  6. L.L. Hench, J.L. West, Principles of Electronic Ceramics (Willey, New York, 1990)

    Google Scholar 

  7. I.G. Kaplan, J. Soullard, J. Hernandez-Cobos, Phys. Rev. B 65, 214509 (2002)

    Article  ADS  Google Scholar 

  8. Y. Fukuzumi, K. Mizuhashi, S. Ushida, Phys. Rev. B 61, 627 (2000)

    Article  ADS  Google Scholar 

  9. V.N. Vieira, P. Pureur, J. Schaf, Phys. Rev. B 66, 224506 (2002)

    Article  ADS  Google Scholar 

  10. J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Phys. Rev. Lett. 60, 53 (1988)

    Article  ADS  Google Scholar 

  11. B.K. Jones, J. Santana, M. McPherson, Solid State Commun. 107, 47 (1988)

    Article  Google Scholar 

  12. E. Arslan, Y. Safak, Ş. Altmdal, Ö Kelekçi, E. Özbay, J. Non-Cryst. Solids 306, 1006 (2010)

    Article  ADS  Google Scholar 

  13. C.C. Wang, G.Z. Liu, M. He, H.B. Lu, Appl. Phys. Lett. 92, 052905 (2008)

    Article  ADS  Google Scholar 

  14. A.G.U. Perera, W.Z. Shen, M. Ershov, H.C. Liu, M. Buchanan, W.J. Schaff, Appl. Phys. Lett. 74, 3167 (1999)

    Article  ADS  Google Scholar 

  15. R. Gharbi, M. Abdelkrim, M. Fathllah, E. Tresso, S. Ferrero, C.F. Piri, T. Mohamed Brahim, Solid-State Electron. 50, 367 (2006)

    Article  ADS  Google Scholar 

  16. L.F. Feng, D. Li, C.Y. Zhu, C.D. Wang, H.X. Cong, X.S. Xie, C.Z. Lu, J. Appl. Phys. 102, 063102 (2007)

    Article  ADS  Google Scholar 

  17. C.Y. Zhu, L.F. Feng, C.D. Wang, H.X. Cong, G.Y. Zhang, Z.J. Yang, Z.Z. Chen, Solid-State Electron. 53, 324 (2009)

    Article  ADS  Google Scholar 

  18. R. Vogel, P. Walsh, J. Appl. Phys. 216, 14 (1969)

    Google Scholar 

  19. S.H. Zahid, A.K. Jonscher, Supercond. Sci. Technol. 2, 587 (1987)

    Google Scholar 

  20. W. Van Roosbroeck, Phys. Rev. Lett. 28, 1120 (1972)

    Article  ADS  Google Scholar 

  21. E. Ehrenfreund, C. Lungenschmied, G. Dennler, H. Neugebauer, N.S. Sariciftci, Appl. Phys. Lett. 91, 012112 (2007)

    Article  ADS  Google Scholar 

  22. C. Lungenschmied, E. Ehrenfreund, N.S. Sariciftci, Org. Electron. 10, 115 (2009)

    Article  Google Scholar 

  23. J. Konopka, R. Jose, M. Wołcyrz, Physica C 435, 53 (2006)

    Article  ADS  Google Scholar 

  24. M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasileweki, V. Ryzhii, Appl. Phys. Lett. 70, 1828 (1997)

    Article  ADS  Google Scholar 

  25. N.C. Chen, P.Y. Wang, J.F. Chen, Appl. Phys. Lett. 72, 1081 (1998)

    Article  ADS  Google Scholar 

  26. J. Allison, V.R. Dave, Electron. Lett. 7, 706 (1971)

    Article  Google Scholar 

  27. F. Lemmi, N.M. Johnson, Appl. Phys. Lett. 74, 251 (1999)

    Article  ADS  Google Scholar 

  28. B.S. Doyle, J. Phys. D 19, 1129 (1986)

    Article  ADS  Google Scholar 

  29. M. Ilyas, M. Zulfequar, M. Husain, Physica B 271, 125 (1999)

    Article  ADS  Google Scholar 

  30. A.G.U. Perera, W.Z. Shen, M. Ershov, H.C. Liu, M. Buchanan, W.J. Schaff, Appl. Phys. Lett. 74, 3167 (1999)

    Article  ADS  Google Scholar 

  31. M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasileweki, A.K. Jonscjer, IEEE Trans. Electron Devices 45, 2196 (1998)

    Article  ADS  Google Scholar 

  32. G.B. Parravicini, A. Stella, M.C. Ungureanu, R. Kofman, Appl. Phys. Lett. 85, 302 (2004)

    Article  ADS  Google Scholar 

  33. N.A. Penin, Semiconductors 30, 340 (1996)

    ADS  Google Scholar 

  34. A.K. Jonscher, J. Chem. Soc. Faraday Trans. 2(82), 75 (1986)

    Google Scholar 

  35. M. Beale, P. Mackay, Philos. Mag. B 65, 47 (1992)

    Article  Google Scholar 

  36. J. Bisquert, G. Garcia-Belmonte, A. Pitarch, H.J. Bolink, Chem. Phys. Lett. 422, 184 (2006)

    Article  ADS  Google Scholar 

  37. X. Xu, Z. Jiao, M. Fu, L. Feng, K. Xu, R. Zuo, X. Chen, Physica C 417, 166 (2005)

    Article  ADS  Google Scholar 

  38. R.K. Nkum, M.O. Gyekye, F. Boakye, Solid State Commun. 122, 569 (2002)

    Article  ADS  Google Scholar 

  39. S. Cavdar, H. Koralay, S. Altmdal, J. Low Temp. Phys. 164, 102 (2011)

    Article  ADS  Google Scholar 

  40. J.B. Shi, Y. Hsu, C.T. Lin, Physica C 299, 272 (1998)

    Article  ADS  Google Scholar 

  41. M.S. Vijaya, G. Rangarajan, Materials Science, 1st edn. (Tata McGraw-Hill, New Delhi, 2004)

    Google Scholar 

  42. M. Mumtaz, N.A. Khan, S. Khan, J. Appl. Phys. 111, 013920 (2012)

    Article  ADS  Google Scholar 

  43. M. Mumtaz, N.A. Khan, Physica C 469, 728 (2009)

    Article  ADS  Google Scholar 

  44. M. Mumtaz, N.A. Khan, Physica C 469, 182 (2009)

    Article  ADS  Google Scholar 

  45. P. Badica, A. Iyo, A. Crisan, Y. Ishiura, A. Sudaresan, H. Ihara, Supercond. Sci. Technol. 15, 964 (2002)

    Article  ADS  Google Scholar 

  46. G. Xiao, A. Bakhshi, M.Z. Cieplak, Z. Tesanovic, C.L. Chien, Phys. Rev. B 39, 315 (1989)

    Article  ADS  Google Scholar 

  47. M. Mumtaz, N.A. Khan, Physica B 404, 3973 (2009)

    Article  ADS  Google Scholar 

  48. N.A. Khan, M. Rahim, J. Alloys Compd. 481, 81 (2009)

    Article  Google Scholar 

  49. M. Rahim, N.A. Khan, J. Alloys Compd. 513, 55 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mumtaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahim, M., Khan, N.A. & Mumtaz, M. Temperature and Frequency Dependent Dielectric Properties of Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ Bulk Superconductor. J Low Temp Phys 172, 47–58 (2013). https://doi.org/10.1007/s10909-012-0840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0840-z

Keywords

Navigation