Skip to main content
Log in

Correlation Between Band Structure and Magneto- Transport Properties in HgTe/CdTe Two-Dimensional Far-Infrared Detector Superlattice

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Theoretical calculations of the electronic properties of n-type HgTe/CdTe superlattices (SLs) have provided an agreement with the experimental data on the magneto-transport behaviour. We have measured the conductivity, Hall mobility, Seebeck and Shubnikov-de Haas effects and angular dependence of the magneto-resistance. Our sample, grown by MBE, had a period d=d 1+d 2 (124 layers) of \(d_{1}=8.6~\mathrm{nm}~\mathrm{(HgTe)} /d_{2}=3.2~\mathrm{nm}~\mathrm{(CdTe)}\). Calculations of the spectras of energy E(d 2), E(k z ) and E(k p ), respectively, in the direction of growth and in plane of the superlattice; were performed in the envelope function formalism. The energy E(d 2,Γ,4.2 K), shown that when d 2 increase the gap E g decrease to zero at the transition semiconductor to semimetal conductivity behaviour and become negative accusing a semimetallic conduction. At 4.2 K, the sample exhibits n type conductivity, confirmed by Hall and Seebeck effects, with a Hall mobility of \(2.5 \times 10^{5}~\mathrm{cm}^{2}/ \mathrm{V\,s}\). This allowed us to observe the Shubnikov-de Haas effect with n=3.20×1012 cm−2. Using the calculated effective mass (\(m^{*}_{E1}(E_{F}) = 0.05 m_{0}\)) of the degenerated electrons gas, the Fermi energy (2D) was E F =88 meV in agreement with 91 meV of thermoelectric power α. In intrinsic regime, αT −3/2 and R H T 3/2 indicates a gap E g =E 1HH 1=101 meV in agreement with calculated E g (Γ,300 K)=105 meV. The formalism used here predicts that the system is semiconductor for d 1/d 2=2.69 and d 2<100 nm. Here, d 2=3.2 nm and E g (Γ,4.2 K)=48 meV so this sample is a two-dimensional modulated nano-semiconductor and far-infrared detector (12 μm<λ c <28 μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Esaki, R. Tsu, IBM J. Res. Dev. 61–65 (1970)

  2. R. Dingle, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett. 34, 1327–1330 (1975)

    Article  ADS  Google Scholar 

  3. H. Sakaki, L.L. Chang, G.A. Sai-Halasz, C.A. Chang, L. Esaki, Solid State Commun. 26(9), 589–592 (1978)

    Article  ADS  Google Scholar 

  4. G. Bastard, Phys. Rev. B 25, 7584–7597 (1982)

    Article  ADS  Google Scholar 

  5. J. Tuchendler, M. Grynberg, Y. Couder, H. Thomé, R. Le Toullec, Phys. Rev. B 8, 3884–3894 (1973)

    Article  ADS  Google Scholar 

  6. Ab. Nafidi, A. El Kaaouachi, H. Sahsah, Ah. Nafidi, in Book of Abstracts of the International Conference on Theoretical Physics (HT 2002), Paris, France, 22–27 July (2002), pp. 274–275

    Google Scholar 

  7. A. Nafidi, A. El Kaaouachi, A. Nafidi, J.P. Faurie, A. Million, J. Piaguet, Phys. Status Solidi B 229(1/2), 573–576 (2002)

    Article  ADS  Google Scholar 

  8. N.F. Johnson, P.M. Hui, H. Ehrenreich, Phys. Rev. Lett. 61, 1993–1995 (1988)

    Article  ADS  Google Scholar 

  9. E.O. Kane, J. Phys. Chem. Solids 1(4), 249–261 (1957)

    Article  ADS  Google Scholar 

  10. M.H. Weiler, in Semiconductors and Semimetals, vol. 16, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1981), p. 119

    Google Scholar 

  11. C. Kittel, Introduction to Solid State Physics, 3rd edn. (Wiley, New York, 2001), p. 333

    Google Scholar 

  12. K. Seeger, in Semiconductor Physics: An Introduction, 8th edn. (Springer, Berlin, 2002), pp. 1–159. ISBN: 9783540438137, Chap. 6

    Google Scholar 

  13. G.L. Hansen, J.L. Schmit, T.N. Casselman, J. Appl. Phys. 53, 7099–7101 (1982)

    Article  ADS  Google Scholar 

  14. M. Braigue, A. Nafidi, Y. Benlaabidya, H. Chaib, A. Daddabi, R. Morghi, A. Idbaha, M. Massaq, T. El Gouti, J. Hemine, M. Srinivasa Vinod, J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1229-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nafidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braigue, M., Nafidi, A., Idbaha, A. et al. Correlation Between Band Structure and Magneto- Transport Properties in HgTe/CdTe Two-Dimensional Far-Infrared Detector Superlattice. J Low Temp Phys 171, 808–817 (2013). https://doi.org/10.1007/s10909-012-0818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0818-x

Keywords

Navigation