Skip to main content
Log in

Superfluid State of 4He on Graphane and Graphene–Fluoride: Anisotropic Roton States

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We explore the phase behavior of Helium films on two variants of graphene: graphane (graphene coated with H, denoted GH) and graphene–fluoride (GF). A semiempirical interaction with these substrates is used in T=0 K Path Integral Ground State and finite temperature Path Integral Monte Carlo simulations. We predict that 4He forms anisotropic fluid states at low coverage. This behavior differs qualitatively from that on graphite because of the different surface composition, symmetry and spacing of the adsorption sites. The 4He ground state on both substrates is thus a self-bound anisotropic superfluid with a superfluid fraction ρ s /ρ lower than 1 due to the corrugation of the adsorption potential. In the case of GF such corrugation is so large that ρ s /ρ=0.6 at T=0 K and the superfluid is essentially restricted to move in a multiconnected space, along the bonds of a honeycomb lattice. We predict a superfluid transition temperature T≃ 0.25 (1.1) K for 4He on GF (GH). We have studied the elementary excitation spectrum of 4He on GF at equilibrium density finding a phonon–maxon–roton dispersion relation that is strongly anisotropic in the roton region. We conclude that these new platforms for adsorption studies offer the possibility of studying novel superfluid phases of quantum condensed matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Reatto, M. Nava, D.E. Galli, C. Billman, J.O. Sofo, M.W. Cole, J. Phys. Conf. Ser. (2012), in press. arXiv:1204.3061

  2. M. Nava, D.E. Galli, M.W. Cole, L. Reatto, submitted for publication

  3. M.J. Stott, E. Zaremba, Phys. Rev. B 22, 1564 (1980)

    Article  ADS  Google Scholar 

  4. M.W. Cole, F. Toigo, Phys. Rev. B 31, 727 (1985)

    Article  ADS  Google Scholar 

  5. G. Vidali, M.W. Cole, C. Schwartz, Surf. Sci. 87, L273 (1979)

    Article  Google Scholar 

  6. K.T. Tang, J.P. Toennies, J. Chem. Phys. 80, 3726 (1984)

    Article  ADS  Google Scholar 

  7. R.A. Aziz, V.P.S. Nain, J.S. Carley, W.L. Taylor, G.T. McConville, J. Chem. Phys. 70, 4330 (1979)

    Article  ADS  Google Scholar 

  8. A. Sarsa, K.E. Schmidt, W.R. Magro, J. Chem. Phys. 113, 1366 (2000)

    Article  ADS  Google Scholar 

  9. M. Rossi, M. Nava, L. Reatto, D.E. Galli, J. Chem. Phys. 131, 154108 (2009)

    Article  ADS  Google Scholar 

  10. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  11. M. Boninsegni, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. Lett. 96, 070601 (2006)

    Article  ADS  Google Scholar 

  12. M. Boninsegni, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. E 74, 036701 (2006)

    Article  ADS  Google Scholar 

  13. R.E. Zillich, J.M. Mayrhofer, S.A. Chin, J. Chem. Phys. 132, 044103 (2010)

    Article  ADS  Google Scholar 

  14. P.A. Whitlock, G.V. Chester, M.H. Kalos, Phys. Rev. B 38, 2418 (1988)

    Article  ADS  Google Scholar 

  15. P.A. Whitlock, G.V. Chester, B. Krishnamachari, Phys. Rev. B 58, 8704 (1998)

    Article  ADS  Google Scholar 

  16. M.E. Pierce, E. Manousakis, Phys. Rev. Lett. 83, 5314 (1999)

    Article  ADS  Google Scholar 

  17. L.W. Brunch, M.W. Cole, E. Zarema, Physical Adsorption: Forces and Phenomena (Dover Publishing, Mineola, 2007), Sect. 6.1

    Google Scholar 

  18. S. Zhang, N. Kawashima, J. Carlson, J.E. Gubernatis, Phys. Rev. Lett. 74, 1500 (1995)

    Article  ADS  Google Scholar 

  19. E. Vitali, M. Rossi, L. Reatto, D.E. Galli, Phys. Rev. B 82, 174510 (2010)

    Article  ADS  Google Scholar 

  20. M. Rossi, E. Vitali, L. Reatto, D.E. Galli, Phys. Rev. B 85, 014525 (2012)

    Article  ADS  Google Scholar 

  21. R.E. Grisenti, L. Reatto, J. Low Temp. Phys. 109, 477 (1997)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Jorge Sofo for help computing the adsorption potential. This work has been supported by Regione Lombardia and CILEA Consortium through a LISA Initiative (Laboratory for Interdisciplinary Advanced Simulation) 2010 grant [http://lisa.cilea.it].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Galli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nava, M., Galli, D.E., Cole, M.W. et al. Superfluid State of 4He on Graphane and Graphene–Fluoride: Anisotropic Roton States. J Low Temp Phys 171, 699–710 (2013). https://doi.org/10.1007/s10909-012-0770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0770-9

Keywords

Navigation