Skip to main content
Log in

Transport Through a Quantum Dot with Coulombic Dot-Lead Coupling

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate joint effects of the Coulombic dot-lead interaction and intralead electron interaction on current through a quantum dot weakly coupled to Luttinger liquid leads. A general formula of current is derived by applying the canonical transformation and the nonequilibrium Green function technique. At low temperature and weak intralead interaction, the current exhibits staircase behavior with the Coulombic dot-lead interaction. When temperature or the intralead interaction increases, the steps are rounded. For a weak or moderately strong interaction the differential conductance as a function of bias voltage demonstrates resonant behavior. The dot-lead exchange scattering processes can dominate electron transport for a certain region of interaction strength. This result implies the possibility of controlling the differential conductance of the transistor by tuning the Coulombic dot-lead coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  2. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  3. F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981)

    Article  ADS  Google Scholar 

  4. A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 77, 4612 (1996)

    Article  ADS  Google Scholar 

  5. A. Yacoby, H.L. Stormer, K.W. Baldwin, K.W. West, Solid State Commun. 101, 77 (1997)

    Article  ADS  Google Scholar 

  6. S. Tarucha, T. Honda, T. Saku, Solid State Commun. 94, 413 (1995)

    Article  ADS  Google Scholar 

  7. W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H.K. Park, Nature 411, 665 (2001)

    Article  ADS  Google Scholar 

  8. J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dai, R.B. Laughlin, L. Liu, C.S. Jayanthi, S.Y. Wu, Phys. Rev. Lett. 87, 106801 (2001)

    Article  ADS  Google Scholar 

  9. M. Fabrizio, A.O. Gogolin, S. Scheidl, Phys. Rev. Lett. 72, 2235 (1994)

    Article  ADS  Google Scholar 

  10. H. Maurey, T. Giamarchi, Phys. Rev. B 51, 10833 (1995)

    Article  ADS  Google Scholar 

  11. A. Furusaki, Phys. Rev. B 57, 7141 (1998)

    Article  ADS  Google Scholar 

  12. K.-H. Yang, Y.-P. Wu, Y.-L. Zhao, Phys. Lett. A 374, 917 (2010)

    Article  ADS  MATH  Google Scholar 

  13. K.-H. Yang, Y.-J. Wu, Y.-P. Wu, Y.-L. Zhao, Phys. Lett. A 375, 747 (2011)

    Article  ADS  Google Scholar 

  14. K.-H. Yang, Y.-L. Zhao, Physica E 42, 2324 (2010)

    Article  ADS  Google Scholar 

  15. S. Takei, Y.B. Kim, A. Mitra, Phys. Rev. B 72, 075337 (2005)

    Article  ADS  Google Scholar 

  16. G.A. Skorobagat’ko, I.V. Krive, Low Temp. Phys. 34, 858 (2008)

    Article  ADS  Google Scholar 

  17. A. Braggio, R. Fazio, M. Sassetti, Phys. Rev. B 67, 233308 (2003)

    Article  ADS  Google Scholar 

  18. G.D. Mahan, Phys. Rev. 153, 882 (1967)

    Article  ADS  Google Scholar 

  19. M. Goldstein, Y. Weiss, R. Berkovits, Europhys. Lett. 86, 67012 (2009)

    Article  ADS  Google Scholar 

  20. M. Goldstein, Y. Weiss, R. Berkovits, Physica E 42, 610 (2010)

    Article  ADS  Google Scholar 

  21. M. Goldstein, R. Berkovits, Phys. Rev. Lett. 104, 106403 (2010)

    Article  ADS  Google Scholar 

  22. E. Boulat, H. Saleur, Phys. Rev. B 77, 033409 (2008)

    Article  ADS  Google Scholar 

  23. E. Boulat, H. Saleur, P. Schmitteckert, Phys. Rev. Lett. 101, 140601 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Elste, D.R. Reichman, A.J. Millis, Phys. Rev. B 81, 205413 (2010)

    Article  ADS  Google Scholar 

  25. F. Elste, D.R. Reichman, A.J. Millis, Phys. Rev. B 83, 085415 (2011)

    Article  ADS  Google Scholar 

  26. A. Komnik, A.O. Gogolin, Phys. Rev. B 68, 235323 (2003)

    Article  ADS  Google Scholar 

  27. G.D. Mahan, Many-Particle Physics (Plenum, New York, 1990)

    Book  Google Scholar 

  28. H. Haug, A.P. Janho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996)

    Google Scholar 

  29. M. Fabrizio, A.O. Gogolin, Phys. Rev. B 51, 17827 (1995)

    Article  ADS  Google Scholar 

  30. S. Eggert, I. Affleck, Phys. Rev. B 46, 10866 (1992)

    Article  ADS  Google Scholar 

  31. A. Furusaki, N. Nagaosa, Phys. Rev. Lett. 72, 892 (1994)

    Article  ADS  Google Scholar 

  32. L.V. Keldysh, JETP Lett. 20, 1018 (1965)

    MathSciNet  Google Scholar 

  33. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  34. Z.-Z. Chen, R. Lu, B.-F. Zhu, Phys. Rev. B 71, 165324 (2005)

    Article  ADS  Google Scholar 

  35. C.L. Kane, M.P.A. Fisher, Phys. Rev. Lett. 68, 1220 (1992)

    Article  ADS  Google Scholar 

  36. A. Furusaki, Phys. Rev. B 56, 9352 (1997)

    Article  ADS  Google Scholar 

  37. M. Fabrizio, A.O. Gogolin, Phys. Rev. Lett. 78, 4527 (1997)

    Article  ADS  Google Scholar 

  38. D.C. Langreth, Linear and Nonlinear Electron Transport in Solids (Plenum, New York, 1976)

    Google Scholar 

  39. Y.-F. Yang, T.-H. Lin, Phys. Rev. B 64, 233314 (2001)

    Article  ADS  Google Scholar 

  40. P. Nozieres, C.T.D. Domincis, Phys. Rev. 178, 1097 (1969)

    Article  ADS  Google Scholar 

  41. A. Crépieux, P. Devillard, T. Martin, Phys. Rev. B 69, 205302 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Beijing Novel Program (2005B11), by Beijing Natural Science Foundation (1112003) and Fund of Beijing Municipal Education Commission (006000546312503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, KH., Chen, Y., Wang, HY. et al. Transport Through a Quantum Dot with Coulombic Dot-Lead Coupling. J Low Temp Phys 170, 116–130 (2013). https://doi.org/10.1007/s10909-012-0672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0672-x

Keywords

Navigation