Skip to main content
Log in

Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The union of quantum fluids research with nanoscience is rich with opportunities for new physics. The relevant length scales in quantum fluids, 3He in particular, are comparable to those possible using microfluidic and nanofluidic devices. In this article, we will briefly review how the physics of quantum fluids depends strongly on confinement on the microscale and nanoscale. Then we present devices fabricated specifically for quantum fluids research, with cavity sizes ranging from 30 nm to 11 μm deep, and the characterization of these devices for low temperature quantum fluids experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Sukhatme, Y. Mukharsky, T. Chui, D. Pearson, Nature 411, 280 (2001)

    Article  ADS  Google Scholar 

  2. E. Hoskinson, R.E. Packard, T.M. Haard, Nature 433, 376 (2005)

    Article  ADS  Google Scholar 

  3. F.M. Gasparini, M.O. Kimball, K.P. Mooney, M. Diaz-Avila, Rev. Mod. Phys. 80, 1009 (2008)

    Article  ADS  Google Scholar 

  4. I. Rhee, F.M. Gasparini, A. Petrou, D.J. Bishop, Rev. Sci. Instrum. 61, 1528 (1990)

    Article  ADS  Google Scholar 

  5. J.K. Perron, M.O. Kimball, K.P. Mooney, F.M. Gasparini, Nat. Phys. 6, 499 (2010)

    Article  Google Scholar 

  6. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975)

    Article  ADS  Google Scholar 

  7. W.P. Halperin, E. Varoquaux, in Helium Three, ed. by W.P. Halperin, L.P. Pitaevskii (Elsevier, Amsterdam, 1990)

    Google Scholar 

  8. J.C. Wheatley, Rev. Mod. Phys. 47, 415 (1975)

    Article  ADS  Google Scholar 

  9. L.D. Landau, Sov. Phys. JETP 30, 1058 (1956)

    Google Scholar 

  10. L.D. Landau, Sov. Phys. JETP 32, 59 (1957)

    Google Scholar 

  11. G.F. Moores, J.A. Sauls, J. Low Temp. Phys. 91, 13 (1993)

    Article  ADS  Google Scholar 

  12. S. Kalbfeld, D.M. Kucera, J.B. Ketterson, Phys. Rev. Lett. 71, 2264 (1993)

    Article  ADS  Google Scholar 

  13. Y. Lee, T.M. Haard, W.P. Halperin, J.A. Sauls, Nature 400, 431 (1999)

    Article  ADS  Google Scholar 

  14. J.P. Davis, H. Choi, J. Pollanen, W.P. Halperin, Phys. Rev. Lett. 100, 015301 (2008)

    Article  ADS  Google Scholar 

  15. J.P. Davis, J. Pollanen, H. Choi, J.A. Sauls, W.P. Halperin, Nat. Phys. 7, 571 (2008)

    Article  Google Scholar 

  16. J.P. Davis, H. Choi, J. Pollanen, W.P. Halperin, Phys. Rev. Lett. 101, 085301 (2008)

    Article  ADS  Google Scholar 

  17. J.P. Davis, Transverse sound spectroscopy of excited cooper pair states in superfluid 3He. Thesis, Northwestern University (2008)

  18. A.B. Vorontsov, J.A. Sauls, Phys. Rev. Lett. 98, 045301 (2007)

    Article  ADS  Google Scholar 

  19. A.B. Vorontsov, J.A. Sauls, Phys. Rev. B 68, 064508 (2003)

    Article  ADS  Google Scholar 

  20. A.B. Vorontsov, J.A. Sauls, J. Low Temp. Phys. 138, 283 (2005)

    Article  ADS  Google Scholar 

  21. R.G. Bennett, L.V. Levitin, A. Casey, B. Cowan, J. Parpia, J. Saunders, J. Low Temp. Phys. 158, 163 (2010)

    Article  ADS  Google Scholar 

  22. L.V. Levitin, R.G. Bennett, A.J. Casey, B. Cowan, J. Parpia, J. Saunders, J. Low Temp. Phys. 158, 159 (2010)

    Article  ADS  Google Scholar 

  23. S.G. Dimov, R.G. Bennett, B. Ilic, S.S. Verbridge, L.V. Levitin, A.D. Fefferman, A. Casey, J. Saunders, J.M. Parpia, J. Low Temp. Phys. 158, 155 (2010)

    Article  ADS  Google Scholar 

  24. S. Dimov, R.G. Bennett, A. Córcoles, L.V. Levitin, B. Ilic, S.S. Verbridge, J. Saunders, A. Casey, J.M. Parpia, Rev. Sci. Instrum. 81, 013907 (2010)

    Article  ADS  Google Scholar 

  25. M. González, P. Bhupathi, B.H. Moon, P. Zheng, G. Ling, E. Garcell, H.B. Chan, Y. Lee, J. Low Temp. Phys. 162, 661 (2010)

    Article  ADS  Google Scholar 

  26. J.C. Davis, A. Amar, J.P. Pekola, R.E. Packard, Phys. Rev. Lett. 60, 302 (1988)

    Article  ADS  Google Scholar 

  27. A.M.R. Schechter, R.W. Simmonds, R.E. Packard, J.C. Davis, Nature 396, 554 (1998)

    Article  ADS  Google Scholar 

  28. J. Xu, B.C. Crooker, Phys. Rev. Lett. 65, 3005 (1990)

    Article  ADS  Google Scholar 

  29. J.P. Davis, H. Choi, J. Pollanen, W.P. Halperin, J. Low Temp. Phys. 153, 1 (2008)

    Article  ADS  Google Scholar 

  30. Y. Wada, S. Murakawa, Y. Tamura, M. Saitoh, Y. Aoki, R. Nomura, Y. Okuda, Phys. Rev. B 78, 214516 (2008)

    Article  ADS  Google Scholar 

  31. M. Barmatz, I. Rudnick, Phys. Rev. 170, 224 (1968)

    Article  ADS  Google Scholar 

  32. B. Lambert, R. Perzynski, D. Salin, Phys. Rev. B 20, 1025 (1979)

    Article  ADS  Google Scholar 

  33. J.M. Kosterlitz, D.J. Thouless, J.Phys. C : Solid State Phys. 6 (1973)

  34. D.L. Stein, M.C. Cross, Phys. Rev. Lett. 42, 504 (1979)

    Article  ADS  Google Scholar 

  35. P. Sharma, A. Córcoles, R.G. Bennett, J.M. Parpia, B. Cowan, A. Casey, J. Saunders, Phys. Rev. Lett. 107, 196805 (2011)

    Article  ADS  Google Scholar 

  36. V. Ambegaokar, P.G. deGennes, D. Rainer, Phys. Rev. A 9, 2676 (1974)

    Article  ADS  Google Scholar 

  37. J.A. Sauls, A.B. Vorontsov, private communication (2011)

  38. M.R. Freeman, R.S. Germain, E.V. Thuneberg, R.C. Richardson, Phys. Rev. Lett. 60, 596 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Alberta, Faculty of Science; the Natural Sciences and Engineering Research Council, Canada; and the Canada Foundation for Innovation. We would like to thank W.P. Halperin, J.R. Beamish, M.R. Freeman, H. Choi, J. Pollanen, L. Li and W.J. Gannon for stimulating discussions. We are grateful to the technical support of Greg Popowich and Don Mullin, and the staff of the University of Alberta NanoFab for their assistance in device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duh, A., Suhel, A., Hauer, B.D. et al. Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments. J Low Temp Phys 168, 31–39 (2012). https://doi.org/10.1007/s10909-012-0617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0617-4

Keywords

Navigation