Skip to main content
Log in

The Interplay Among Electrical, Magnetic, and Structural Properties in the Non-superconducting Ru(Sr2−x Ba x )GdCu2Oz System

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The electrical, magnetic, and structural properties of the non-superconducting RuSr2GdCu2Oz system were studied through Ba substitution on the Sr sites. Samples of the non-superconducting Ru(Sr2−x Ba x )GdCu2Oz system, with x=0, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.50 were synthesized through the solid-state reaction method at ambient pressure, in air, at temperatures between 980 °C and 1025 °C. X-ray diffraction data show that substitution of Sr by Ba takes place iso-structurally into a tetragonal structure (space group P4/mmm, No. 123) with a solubility up to x=0.25. Rietlveld-refinement analysis indicates that the cell volume monotonically increases with barium content, while both Cu–O(1) and [1–Ru–O(1)] bond lengths, as well as the Cu–O(2)–Cu bond angles, all increase with increasing x with a maximum peak around x=0.15, and then all decrease for larger values of the barium content x, resulting into bell-type curves. The electrical resistance for the samples with 0 ≤x≤0.25 annealed in flowing oxygen at 960 °C for 2 h shows a semiconducting behavior. DC-magnetization measurements indicate that all samples exhibit ferromagnetic ordering with a magnetic transition temperature T Curie between 131 K and 141 K. Both the normalized resistance values (at a fixed temperature) and T Curie show each a similar bell-type dependence on x, a result that seems to be similar to that found for the bond lengths and angles. These five bell-type dependences on x suggest that a strong interplay among electrical, magnetic and structural properties are taken place in the non-superconducting Ru(Sr2−x Ba x )GdCu2Oz system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Bauernfeind, W. Widder, H.F. Braun, Physica C 254, 151 (1995)

    Article  ADS  Google Scholar 

  2. L. Bauernfeind, W. Widder, H.F. Braun, J. Low Temp. Phys. 105, 1605 (1996)

    Article  ADS  Google Scholar 

  3. J.L. Tallon, C. Bernhard, M. Bowden, P. Gilberd, T. Stoto, D. Pringle, IEEE Trans. Appl. Supercond. 9, 1696 (1999)

    Article  Google Scholar 

  4. C. Bernhard, J.L. Tallon, Ch. Niedermayer, Th. Blasius, A. Golnik, E. Brücher, R.K. Kremer, D.R. Noakes, C.E. Stronack, E.J. Asnaldo, Phys. Rev. B 59, 14099 (1999)

    Article  ADS  Google Scholar 

  5. A.C. McLaughlin, W. Zhou, J.P. Attfield, A.N. Fitch, J.L. Tallon, Phys. Rev. B 60, 7512 (1999)

    Article  ADS  Google Scholar 

  6. O. Chmaissem, J.D. Jorgensen, H. Shaked, P. Dollar, J.L. Tallon, Phys. Rev. B 61, 6401 (2000)

    Article  ADS  Google Scholar 

  7. L. Bauernfeind, W. Widder, H.F. Braun, in High T c Superconductors, vol. 6, ed. by A. Barone, D. Fiorani, A. Tampieri (Gruppo Editoriale Faenza S.p.A., Faenza, 1995) p. 329

    Google Scholar 

  8. L. Bauernfeind. Ph.D. Thesis Universität Bayreuth, July 1998

  9. P.W. Klamut, B. Dabrowski, S.M. Mini, M. Maxwell, S. Kolesnik, J. Mais, A. Shengelaya, R. Khasanov, I. Savic, H. Keller, T. Graber, J. Gebhardt, P.J. Vicarro, Y. Xiao, Physica C 364–365, 313 (2001)

    Article  Google Scholar 

  10. P.B. Lorenz, R.L. Meng, J. Cmaidalka, Y.S. Wang, J. Lenzi, Y.Y. Xue, C.W. Chu, Physica C 363, 251 (2001)

    Article  ADS  Google Scholar 

  11. C. Artini, M.M. Carnasciali, G.A. Costa, M. Ferretti, M.R. Cimberle, M. Putti, R. Masini, Physica C 377, 431 (2002)

    Article  ADS  Google Scholar 

  12. S. Chen, H.F. Braun, T.P. Papageorgiou, J. Alloys Compd. 351, 7 (2003)

    Article  Google Scholar 

  13. P.W. Klamut, B. Dabrowski, S.M. Mini, M. Maxwell, J. Mais, I. Felner, U. Asaf, F. Ritter, A. Shengelaya, R. Khasanov, I.M. Savic, H. Keller, A. Wisniewski, R. Puzniak, I.M. Fita, C. Sulkowski, M. Matusiak, Physica C 387, 33 (2003)

    Article  ADS  Google Scholar 

  14. H.F. Braun, in Frontiers in Superconducting Materials, ed. by A.V. Narlikar (Springer, Berlin, 2005), p. 365

    Chapter  Google Scholar 

  15. A.C. McLaughlin, W. Zhou, J.P. Attfield, A.N. Fitch, J.L. Talon, Phys. Rev. B 60, 7512 (1999)

    Article  ADS  Google Scholar 

  16. E. Casini, M. Kempf, J. Krämer, H.F. Braun, J. Phys., Condens. Matter 21, 254210 (2009)

    Article  ADS  Google Scholar 

  17. P.W. Klamut, Supercond. Sci. Technol. 21, 093001 (2008)

    Article  ADS  Google Scholar 

  18. T. Nachtrab, Ch. Bernhard, C.T. Lin, D. Koelle, R. Kleiner, C. R. Phys. 7, 6 (2006)

    Article  Google Scholar 

  19. S.G. Ovchinnikov, Phys. Usp. 46, 21 (2003)

    Article  ADS  Google Scholar 

  20. A.V. Narlikar, Magnetic Superconductors, Studies of High Temperature Superconductors, vol. 46 (Nova Science, New York, 2003)

    Google Scholar 

  21. C. Noce, A. Vecchione, M. Cuoco, A. Romano (eds.), Ruthenate and Rutheno-Cuprate Materials: Unconventional Superconductivity, Magnetism and Quantum Phase Transitions, LNP, vol. 603 (Springer, Berlin, 2002)

    Google Scholar 

  22. L.T. Yang, J.K. Liang, Q.L. Liu, J. Luo, G.B. Song, F.S. Liu, X.M. Feng, G.H. Rao, J. Appl. Phys. 95, 2004 (1942)

    Google Scholar 

  23. S.G. Hur, D.H. Park, S.-J. Hwang, S.J. Kim, J.H. Lee, S.Y. Lee, J. Phys. Chem. B 1009, 21694 (2005)

    Article  Google Scholar 

  24. T.W. Kim, I.-S. Yang, S.-J. Hwang, Bull. Korean Chem. Soc. 30, 2559 (2009)

    Article  Google Scholar 

  25. I. Felner, U. Asaf, S. Reich, Y. Tsabba, Physica C 311, 163 (1999)

    Article  ADS  Google Scholar 

  26. N.D. Zhigadlo, P. Odier, J.Ch. Marty, P. Bordet, A. Sulpice, Physica C 387, 347 (2003)

    Article  ADS  Google Scholar 

  27. P.W. Klamut, B. Dabrowski, S.M. Mini, M. Maxwell, J. Mais, I. Felner, U. Asaf, F. Ritter, A. Shengelaya, R. Khasanov, I.M. Savic, H. Keller, A. Wisniewski, R. Pizniak, I.M. Fita, C. Sulkowski, M. Matusiak, Physica C 387, 33 (2003)

    Article  ADS  Google Scholar 

  28. I. Matsubara, N. Kida, R. Funahashi, J. Phys., Condens. Matter 13, 5645 (2001)

    Article  ADS  Google Scholar 

  29. J.L. Tallon, J.W. Loram, G.V.M. Williams, C. Bernhard, Phys. Rev. B 61, R6471 (2000)

    Article  ADS  Google Scholar 

  30. X.H. Chen, Z. Sun, K.Q. Wang, S.Y. Li, Y.M. Xiong, M. Yu, L.Z. Cao, Phys. Rev. B 63, 064506 (2001)

    Article  ADS  Google Scholar 

  31. T.P. Papageorgiou, E. Casini, H.F. Braun, T. Herrmannsdoerfer, A.D. Bianchi, J. Wosnitza, Eur. Phys. J. B 52, 383 (2006)

    Article  ADS  Google Scholar 

  32. C.W. Chu, Y.Y. Xue, S. Tsui, J. Cmaidalka, A.K. Heilman, B. Lorenz, R.L. Meng, Physica C 335, 231 (2000)

    Article  ADS  Google Scholar 

  33. N.J. Nor Azah, S.A. Halim, R. Abd-Shukor, Supercond. Sci. Technol. 18, 1365 (2005)

    Article  ADS  Google Scholar 

  34. O.I. Lebedev, G. Van Tendeloo, G. Cristiani, H.-U. Habermeier, A.T. Matveev, Phys. Rev. B 71, 134523 (2005)

    Article  ADS  Google Scholar 

  35. M. Abatal, E. Chavira, C. Filippini, V. García-Vázquez, J.C. Pérez, H. Noël, J. Low Temp. Phys. 157, 57 (2009)

    Article  ADS  Google Scholar 

  36. www.llb.cea.fr/fullweb/fp2k/fp2k_links.htm

  37. V. García-Vázquez, N. Pérez-Amaro, A. Canizo-Cabrera, B. Cumplido-Espínola, R. Martínez-Hernández, M.A. Abarca-Ramírez, Rev. Sci. Instrum. 72, 3332 (2001)

    Article  ADS  Google Scholar 

  38. R.D. Shannon, Acta Crystallogr. A, Found. Crystallogr. 32, 751 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by CONACYT (Grant No. 80380), OCI UNAM-UNACAR, and VIEP-BUAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abatal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abatal, M., García-Vázquez, V., Chavira, E. et al. The Interplay Among Electrical, Magnetic, and Structural Properties in the Non-superconducting Ru(Sr2−x Ba x )GdCu2Oz System. J Low Temp Phys 168, 69–83 (2012). https://doi.org/10.1007/s10909-012-0610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0610-y

Keywords

Navigation