Skip to main content
Log in

Can the Lateral Proximity Effect Be Used to Create the Superconducting Transition of a Micron-Sized TES?

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent measurements of micron-sized Mo/Au bilayer TESs have demonstrated that the TES can behave like an S-S′-S weak link due to the lateral proximity effect from superconducting leads. In this regime the T c is a function of bias current, and the effective T c shifts from the bilayer T c towards the lead T c . We explore the idea that a micron-sized S-N-S weak link could provide a new method to engineer the TES T c . This method would be particularly useful when small size requirements for a bilayer TES (such as for a hot-electron microbolometer) lead to undesirable shifts in the bilayer T c . We present measurements of a variety of micron-sized normal Au ‘TES’ devices with Nb leads. We find no evidence of a superconducting transition in the Au film of these devices, in dramatic contrast to the strong lateral proximity effect seen in micron-sized Mo/Au bilayer devices. The absence of a transition in these devices is also in disagreement with theoretical predictions for S-N-S weak links. We hypothesize that a finite contact resistance between the Nb and Au may be weakening the effect. We conclude that the use of the lateral proximity effect to create a superconducting transition will be difficult given current fabrication procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Task Force on CMB Research, TFCR Final Report, (2005) [Online]. Available: http://www.nsf.gov/mps/ast/tfcr.jsp

  2. D.J. Benford, M. Amato, J. Mather, S. Moseley, D. Leisawitz, Astrophys. Space Sci. 294, 177 (2004)

    Article  ADS  Google Scholar 

  3. J.E. Sadleir, S.J. Smith, S.R. Bandler, J.A. Chervenak, J.R. Clem, Phys. Rev. Lett. 104 (2010)

  4. E.M. Barrentine, D.E. Brandl, A.D. Brown, N.T. Cao, K.L. Denis, W.T. Hsieh, T.R. Stevenson, P.T. Timbie, K. U-Yen, E.J. Wollack, AIP Conf. Proc. 1185, 542 (2009)

    Article  ADS  Google Scholar 

  5. J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, M.E. Gershenson, Nat. Nanotechnol. 3, 496 (2008)

    Article  ADS  Google Scholar 

  6. R.B. van Dover, A. de Lozanne, M.R. Beasley, J. Appl. Phys. 52, 7327 (1981)

    Article  ADS  Google Scholar 

  7. R.B. van Dover, A. de Lozanne, R.E. Howard, W.L. McLean, M.R. Beasley, Appl. Phys. Lett. 37, 838 (1980)

    Article  ADS  Google Scholar 

  8. A. de Lozanne, M.S. DiIorio, M.R. Beasley, Appl. Phys. Lett. 42, 541 (1983)

    Article  ADS  Google Scholar 

  9. P. Dubos, H. Courtois, B. Pannetier, F.K. Wilhelm, A.D. Zaikin, G. Schön, Phys. Rev. B 63, 064502 (2001)

    Article  ADS  Google Scholar 

  10. J. Warlaumont, R. Buhrman, IEEE Trans. Magn. 15, 570 (1979)

    Article  ADS  Google Scholar 

  11. J. Sauvageau, R. Ono, A. Jain, K. Li, J. Lukens, IEEE Trans. Magn. 21, 854 (1985)

    Article  ADS  Google Scholar 

  12. K.K. Likharev, Rev. Mod. Phys. 51, 101 (1979)

    Article  ADS  Google Scholar 

  13. P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964)

    Article  ADS  Google Scholar 

  14. B.M. Hinaus, M.S. Rzchowski, B.A. Davidson, J.E. Nordman, K. Siangchaew, M. Libera, Phys. Rev. B 56, 10828 (1997)

    Article  ADS  Google Scholar 

  15. V.G. Kogan, Phys. Rev. B 26, 88 (1982)

    Article  ADS  Google Scholar 

  16. N.W. Ashcroft, N.D. Mermin, Solid State Physics, 1st edn. (Holt, Renehart and Winston Press, New York, 1976)

    Google Scholar 

  17. M.Y. Kuprianov, V.F. Lukichev, Sov. Phys. JETP 67, 1163 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Barrentine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrentine, E.M., Brandl, D.E., Brown, A.D. et al. Can the Lateral Proximity Effect Be Used to Create the Superconducting Transition of a Micron-Sized TES?. J Low Temp Phys 167, 195–201 (2012). https://doi.org/10.1007/s10909-012-0578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0578-7

Keywords

Navigation