Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 1004–1014 | Cite as

Development of Metallic Magnetic Calorimeters for High Precision Measurements of Calorimetric 187Re and 163Ho Spectra

  • P. C.-O. Ranitzsch
  • J.-P. Porst
  • S. Kempf
  • C. Pies
  • S. Schäfer
  • D. Hengstler
  • A. Fleischmann
  • C. Enss
  • L. Gastaldo
Article

Abstract

The measurement of calorimetric spectra following atomic weak decays, beta (β) and electron capture (EC), of nuclides having a very low Q-value, can provide an impressively high sensitivity to a non-vanishing neutrino mass. The achievable sensitivity in this kind of experiments is directly connected to the performance of the used detectors. In particular an energy resolution of a few eV and a pulse formation time well below 1 μs are required. Low temperature Metallic Magnetic Calorimeters (MMCs) for soft X-rays have already shown an energy resolution of 2.0 eV FWHM and a pulse rise-time of about 90 ns for fully micro-fabricated detectors. We present the use of MMCs for high precision measurements of calorimetric spectra following the β-decay of 187Re and the EC of 163Ho. We show results obtained with detectors optimized for 187Re and for 163Ho experiments respectively. While the detectors equipped with superconducting Re absorbers have not yet reached the aimed performance, a first detector prototype with a Au absorber having implanted 163Ho ions already shows excellent results. An energy resolution of 12 eV FWHM and a rise time of 90 ns were measured.

Keywords

Neutrino mass Single beta decay Electron capture Low temperature detector 

References

  1. 1.
    V. Lobashev et al., Phys. Lett. B 460(1–2), 227–235 (1999) ADSGoogle Scholar
  2. 2.
    C. Kraus et al., Eur. Phys. J. C, Part. Fields 40, 447–468 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    KATRIN Collaboration, arXiv:hep-ex/0109033v1 (2001)
  4. 4.
    D. McCammon et al., in Neutrino Mass and Low Energy Weak Interactions, ed. by V. Barger, D. Cline (World Scientific, Singapore, 1984), pp. 329–343 Google Scholar
  5. 5.
    S. Vitale et al., INFN internal report, INFN/BE-85/2 (1985) Google Scholar
  6. 6.
    A. De Rújula, M. Lusignoli, Phys. Lett. B 118(4–6), 429–434 (1982) ADSGoogle Scholar
  7. 7.
    A. Fleischmann et al., AIP Conf. Proc. 1185(1), 571–578 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    C. Pies et al., These Proceedings. J. Low Temp. Phys. (2012). doi:10.1007/s10909-012-0557-z
  9. 9.
    A. Nucciotti, E. Ferri, O. Cremonesi, arXiv:0912.4638v1 [hep-ph] (2009)
  10. 10.
    E. Cosulich, F. Gatti, S. Vitale, J. Low Temp. Phys. 93, 263–268 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    J.-P. Porst et al., J. Low Temp. Phys. 151, 436–442 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    J.-P. Porst, Ph.D. thesis, Heidelberg University, 2011 Google Scholar
  13. 13.
    Goodfellow GmbH, D-61213 Bad Nauheim, Germany. URL http://www.goodfellow.com
  14. 14.
    MARE Collaboration, MARE-Microcalorimeter arrays for a Rhenium experiment (2006). Proposal Google Scholar
  15. 15.
    L. Gastaldo et al., AIP Conf. Proc. 1185(1), 607–611 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    L. Gastaldo et al., in preparation Google Scholar
  17. 17.
    D. Drung et al., IEEE Trans. Appl. Supercond. 17(2), 699–704 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    SQUID electronics type XXF-1 from Magnicon GmbH, Lemsahler Landstr. 171, D-22397 Hamburg, Germany. URL http://www.magnicon.com
  19. 19.
    CompuScope 12100 A/D card from GaGe Applied Technologies, 900 N. State Street, Lockport, IL 60441, USA. URL http://www.gage-applied.com
  20. 20.
    I. Band, M. Trzhaskovskaya, At. Data Nucl. Data Tables 35(1), 1–13 (1986) ADSCrossRefGoogle Scholar
  21. 21.
    T. Mukoyama, Bull. Inst. Chem. Res. 65(1), 17–22 (1987) Google Scholar
  22. 22.
    A. Thompson et al., X-ray data booklet (2009). URL http://xdb.lbl.gov/
  23. 23.
    J. Campbell, T. Papp, At. Data Nucl. Data Tables 77(1), 1–56 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    P.T. Springer, C.L. Bennett, P.A. Baisden, Phys. Rev. A 31, 1965–1967 (1985) ADSCrossRefGoogle Scholar
  25. 25.
    F. Gatti et al., Phys. Lett. B 398(3–4), 415–419 (1997) ADSGoogle Scholar
  26. 26.
    G. Audi, A. Wapstra, C. Thibault, Nucl. Phys. A 729(1), 337–676 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    L. Gastaldo et al., in preparation Google Scholar
  28. 28.
    K. Blaum, Y. Novikov, G. Werth, Contemp. Phys. 51(2), 149 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    S. Lahiri et al., Poster presentation at the LTD-14 conference, 2011 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • P. C.-O. Ranitzsch
    • 1
  • J.-P. Porst
    • 1
    • 2
  • S. Kempf
    • 1
  • C. Pies
    • 1
  • S. Schäfer
    • 1
  • D. Hengstler
    • 1
  • A. Fleischmann
    • 1
  • C. Enss
    • 1
  • L. Gastaldo
    • 1
  1. 1.Kirchhoff-Institute for PhysicsHeidelberg UniversityHeidelbergGermany
  2. 2.Physics DepartmentBrown UniversityProvidenceUSA

Personalised recommendations