Skip to main content
Log in

Modelling the Resistive State in a Transition Edge Sensor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have developed a model for the resistive transition in a transition edge sensor (TES) based on the model of a resistively shunted junction, taking into account phase-slips of a superconducting system across the barriers of the tilted washing board potential. We obtained analytical expressions for the resistance of the TES, R(T,I), and its partial logarithmic derivatives α I and β I as functions of temperature and current. We have shown that all the major parameters describing the resistive state of the TES are determined by the dependence on temperature of the Josephson critical current, rather than by intrinsic properties of the S-N transition. The complex impedance of a pristine TES exhibits two-pole behaviour due to its own intrinsic reactance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.S. Hoover, M.K. Bacrania, N.J. Hoteling, P.J. Karpius, M.W. Rabin, C.R. Rudy, D.T. Vo, J.A. Beall, D.A. Bennett, W.B. Doriese, G.C. Hilton, R.D. Horansky, K.D. Irwin, J.N. Ullom, L.R. Vale, J. Radioanal. Nucl. Chem. 282, 227 (2009)

    Article  Google Scholar 

  2. K.D. Irwin, G.C. Hilton, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics (Springer, Berlin, 2005)

    Google Scholar 

  3. K.D. Irwin, Appl. Phys. Lett. 66, 1998 (1995)

    Article  ADS  Google Scholar 

  4. J.E. Sadleir, S.J. Smith, S.R. Bandler, J.A. Chervenak, J.R. Clem, Phys. Rev. Lett. 104, 047003 (2010)

    Article  ADS  Google Scholar 

  5. A.G. Kozorezov, A.A. Golubov, D.D. Martin, P. de Korte, M. Lindeman, R. Hijmering, J.K. Wigmore, IEEE Trans. Appl. Supercond. 21, 250 (2011)

    Article  ADS  Google Scholar 

  6. J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, M.E. Gershenzon, Nat. Nanotechnol. 3, 496 (2008)

    Article  ADS  Google Scholar 

  7. A. Kozorezov, A.A. Golubov, D.D.E. Martin, P.A.J. de Korte, M.A. Lindeman, R.A. Hijmering, J. van der Kuur, H.F.C. Hoevers, L. Gottardi, M.Yu. Kupriyanov, J.K. Wigmore, Appl. Phys. Lett. 99, 063503 (2011)

    Article  Google Scholar 

  8. Yu.M. Ivanchenko, L.A. Zil’berman, Sov. Phys. JETP 28, 1272 (1969)

    ADS  Google Scholar 

  9. V. Ambegaokar, B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969)

    Article  ADS  Google Scholar 

  10. W.T. Coffey, Y.P. Kalmykov, S.V. Titov, L. Cleary, Phys. Rev. E 78, 031114 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. M.A. Lindeman, S. Bandler, R.P. Brekosky, J.A. Chervenak, E. Figueroa-Feliciano, F. Finkbeiner, M.J. Li, C.A. Kilbourne, Rev. Sci. Instrum. 75, 1283 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kozorezov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozorezov, A., Golubov, A.A., Martin, D.D.E. et al. Modelling the Resistive State in a Transition Edge Sensor. J Low Temp Phys 167, 114–120 (2012). https://doi.org/10.1007/s10909-012-0490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0490-1

Keywords

Navigation