Journal of Low Temperature Physics

, Volume 167, Issue 3–4, pp 102–107 | Cite as

A Two-Fluid Model for the Transition Shape in Transition-Edge Sensors

  • D. A. Bennett
  • D. S. Swetz
  • R. D. Horansky
  • D. R. Schmidt
  • J. N. Ullom
Article

Abstract

Superconducting microcalorimeters based on transition-edge sensors (TESs) are being successfully used in applications ranging from optical photon counting to gamma-ray and alpha particle spectroscopy. Practical instruments often require a complex optimization among speed, linearity and energy resolution. However, a lack of understanding of the superconducting transition limits our ability to predict the behavior of a new TES design. Specifically, there is an unmet need for a model that predicts the current and temperature dependent resistance surface that describes the transition: R(I,T). This paper describes the predictions of a two-fluid model for the resistance of a TES based on a Ginzburg-Landau form of the critical current. We compare the predictions of the model for the logarithmic derivatives of resistance with temperature and current (α and β) to measurements of TESs used in x-ray and gamma spectrometers. The model shows excellent qualitative agreement that provides useful insight into the dependence of α and β on the current density and bias point of the TES.

Keywords

Transition-edge sensors Superconducting transition 

References

  1. 1.
    K.D. Irwin, G.C. Hilton, Transition-edge sensor, in Cryogenic Particle Detection. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2008) Google Scholar
  2. 2.
    B. Cabrera, J. Low Temp. Phys. 151, 82 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Takei, R. Fujimotoa, Y. Ishisaki et al., Nucl. Instrum. Methods A 520, 340 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    S.J. Smith, S.R. Bandler, A.D. Brown et al., J. Low Temp. Phys. 151, 195 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Lindeman, K.A. Barger, D.E. Bradl et al., J. Low Temp. Phys. 151, 190 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    K.D. Irwin, G.C. Hilton, D.A. Wollman, J.M. Martinis, J. Appl. Phys. 83, 3978 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    W.J. Skocpol, M.R. Beasley, M. Tinkham, J. Low Temp. Phys. 16, 145 (1974) ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Lindeman, S. Bandler, R.P. Brekosky et al., Rev. Sci. Instrum. 75, 1283 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2011

Authors and Affiliations

  • D. A. Bennett
    • 1
  • D. S. Swetz
    • 1
  • R. D. Horansky
    • 1
  • D. R. Schmidt
    • 1
  • J. N. Ullom
    • 1
  1. 1.Quantum Devices GroupNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations