Skip to main content
Log in

A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

An Erratum to this article was published on 07 September 2012

Abstract

We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Micheli, G.K. Brennen, P. Zoller, Nat. Phys. 2, 341 (2006)

    Article  Google Scholar 

  2. J.P. Kestner, B. Wang, J.D. Sau, S. Das Sarma, arXiv:1011.2490v1 [cond-mat.quant-gas] (2010)

  3. S. Ronen, D. Bortolotti, J. Bohn, Phys. Rev. Lett. 98, 030406 (2007)

    Article  ADS  Google Scholar 

  4. F. Mazzanti, R.E. Zillich, G. Astrakharchik, J. Boronat, Phys. Rev. Lett. 102, 110405 (2009)

    Article  ADS  Google Scholar 

  5. D. Hufnagl, E. Krotscheck, R.E. Zillich, J. Low Temp. Phys. 158, 85 (2009)

    Article  ADS  Google Scholar 

  6. A. Dutta, J. Bhattacharjee, Phys. Rev. B 64, 184106 (2001)

    Article  ADS  Google Scholar 

  7. A. Sarsa, K. Schmidt, W. Magro, J. Chem. Phys. 113, 1366 (2000)

    Article  ADS  Google Scholar 

  8. P. Cazzato, S. Paolini, S. Moroni, S. Baroni, J. Chem. Phys. 120, 9071 (2004)

    Article  ADS  Google Scholar 

  9. M. Rossi, M. Nava, L. Reatto, D.E. Galli, J. Chem. Phys. 131, 154108 (2009)

    Article  ADS  Google Scholar 

  10. R. Rota, J. Casulleras, F. Mazzanti, J. Boronat, Phys. Rev. E 81, 016707 (2010)

    Article  ADS  Google Scholar 

  11. D. Marx, M. Müser, J. Phys., Condens. Matter 11, R117 (1999)

    Article  ADS  Google Scholar 

  12. R.E. Zillich, J. Mayrhofer, S. Chin, J. Chem. Phys. 132, 044103 (2010)

    Article  ADS  Google Scholar 

  13. D. Benoit, D. Clary, J. Chem. Phys. 113, 5193 (2000)

    Article  ADS  Google Scholar 

  14. N. Blinov, X. Song, P. Roy, J. Chem. Phys. 120, 5916 (2004)

    Article  ADS  Google Scholar 

  15. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 2001)

    Google Scholar 

  16. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, New York, 1999)

    Google Scholar 

  17. R. Honerjäger, R. Tischer, Z. Naturforsch. 28a, 458 (1973)

    ADS  Google Scholar 

  18. T.L. Story Jr., A.J. Herbert, J. Chem. Phys. 64, 855 (1976)

    Article  ADS  Google Scholar 

  19. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 2nd edn. (Cambridge University Press, New York, 2005)

    Book  MATH  Google Scholar 

  20. L. Wasserman, All of Statistics: A Concise Course in Statistical Inference (Springer, New York, 2004)

    MATH  Google Scholar 

  21. D.J. Evans, Mol. Phys. 34, 317 (1977)

    Article  ADS  Google Scholar 

  22. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  23. J. Ye, Private communication (2011)

  24. R.M. Lynden-Bell, K.H. Michel, Rev. Mod. Phys. 66, 721 (1994)

    Article  ADS  Google Scholar 

  25. M. Marechal, M. Dijkstra, Phys. Rev. E 77, 061405 (2008)

    Article  ADS  Google Scholar 

  26. M. Presber, D. Löding, R. Martoňák, P. Nielaba, Phys. Rev. B 58, 11937 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Whaley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abolins, B.P., Zillich, R.E. & Whaley, K.B. A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom. J Low Temp Phys 165, 249–260 (2011). https://doi.org/10.1007/s10909-011-0398-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-011-0398-1

Keywords

Navigation