Skip to main content
Log in

Isotherms, Order Parameter and Density Profiles for Weakly Interacting Bose Gases within Three Mean-Field Theories

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work we consider three mean field approximations of standard use in the literature to describe the weakly interacting Bose gas confined in a box of volume V. For these approximations we calculate the corresponding isotherms μ=μ(ρ,T), where μ is the chemical potential, ρ the particle density and T the absolute temperature. In particular we address this calculation at the nanokelvin regime for a gas parameter \(\gamma= \rho a_{s}^{3}\leq 1\) where the Bose-Einstein Condensation in alkali atoms is observed. The non singled value observed for the equation of state μ=μ(ρ,T) suggests strongly that the approximations considered here do not capture properly the thermodynamic behavior in the vicinity of the BEC transition. In order to support this statement we calculate the so-called order parameter Φ(T)=N 0(T)/N from 0≤TT c where N 0 represents the number of particles within the condensate, N the total number of particles and T c the critical temperature. Both results suggest that the three mean-field theories considered here, Hartree-Fock (HF), Popov (P) and Yukalov-Yukalova (Ykv) do not predict a second order phase transition as the BEC transition in weakly interacting gases is expected to show. Using the Local Density Approximation (LDA) we extend these calculation to obtain the density profiles \(\rho(\vec{r})\) for an inhomogeneous Bose gas trapped in a harmonic external potential \(V_{ext}(\vec{r})\). As expected the density profiles show that the confinement is not enough to override the anomalies observed in the thermodynamic quantities for the gas confined in a box of volume V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Davis, M. Mewes, M. Andrews, N. Vandruten, D. Durfee, D. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  2. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  3. M. Greiner, C.A. Regal, D.S. Jin, Nature 426, 537 (2003)

    Article  ADS  Google Scholar 

  4. E. Donley, N. Claussen, S. Thompson, C. Wieman, Nature 417, 529 (2002)

    Article  ADS  Google Scholar 

  5. Z.Q. Yu, L. Yin, Phys. Rev. A 81, 023613 (2010)

    Article  ADS  Google Scholar 

  6. M. Votja, Rep. Prog. Phys. 66, 2069 (2003)

    Article  ADS  Google Scholar 

  7. P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009)

    Article  ADS  Google Scholar 

  8. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  9. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  10. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  MATH  Google Scholar 

  11. A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)

    Article  ADS  Google Scholar 

  12. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  13. A.J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed Matter Systems. Oxford University Press, Oxford (2006)

    Google Scholar 

  14. V. Romero-Rochin, Phys. Rev. Lett. 94, 130601 (2005)

    Article  ADS  Google Scholar 

  15. A. Einstein, Math. Phys. 1, 3 (1925)

    MathSciNet  Google Scholar 

  16. V. Romero-Rochin, V.S. Bagnato, Braz. J. Phys. 35, 607 (2005)

    Article  Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Statistical Physics I and II, 3rd edn. Course of Theoretical Physics. Butterworth-Heineman, Stoneham (1980)

    Google Scholar 

  18. N.N. Bogoliubov, J. Phys. 11, 23 (1947)

    Google Scholar 

  19. S.T. Beliaev, Sov. Phys. JETP 7, 289 (1958)

    MathSciNet  Google Scholar 

  20. V.V. Goldman, I.F. Silvera, A.J. Leggett, Phys. Rev. B 24, 2870 (1981)

    Article  ADS  Google Scholar 

  21. D. A. W. Hutchinson K. Burnett, R.J. Dodd, S.A. Morgan, M. Rusch, E. Zaremba, N.P. Proukakis, M. Edwards, C.W. Clark, J. Phys. B, At. Mol. Opt. Phys. 33, 3825 (2000)

    Article  ADS  Google Scholar 

  22. N.P. Proukakis, B. Jackson, J. Phys. B, At. Mol. Opt. Phys. 41, 203002 (2008)

    Article  ADS  Google Scholar 

  23. T.D. Lee, K. Huang, C.N. Yang, Phys. Rev. 106, 1135 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. E. Braaten, A. Nieto, Phys. Rev. B 56, 14745 (1997)

    Article  ADS  Google Scholar 

  25. V.N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics. Reidel, Boston (1983)

    Book  MATH  Google Scholar 

  26. V.I. Yukalov, E.P. Yukalova, Phys. Rev. A 74, 063623 (2006)

    Article  ADS  Google Scholar 

  27. V.I. Yukalov, E.P. Yukalova, Phys. Rev. A 76, 013602 (2007)

    Article  ADS  Google Scholar 

  28. H. Shi, A. Griffin, Phys. Rep. 304, 1 (1998)

    Article  ADS  Google Scholar 

  29. E.P. Gross, Nuovo Cimento 20, 454 (1961)

    Article  MATH  Google Scholar 

  30. L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  31. P.B. Blackie, A.S. Bradley, M.J. Davis, R.J. Ballagh, C.W.  Gardiner, Adv. Phys. 57, 363 (2008)

    Article  ADS  Google Scholar 

  32. A. Griffin, Phys. Rev. B 53, 9341 (1996)

    Article  ADS  Google Scholar 

  33. M. Brewczky, M. Gajda, K. Rzazweski, J. Phys. B, At. Mol. Opt. Phys. 40, 1 (2007)

    Article  ADS  Google Scholar 

  34. V.L. Ginzburg, L.P. Pitaevskii, Sov. Phys. JETP 7, 858 (1958)

    MathSciNet  Google Scholar 

  35. T. Bergeman, Phys. Rev. A 55, 3658 (1997)

    Article  ADS  Google Scholar 

  36. N.M. Hugenholtz, D. Pines, Phys. Rev. 116, 489 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. J. Goldstone, Nuovo Cimento 19, 154 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  38. P.B. Blackie, A.S. Bradley, M.J. Davis, R.J. Ballagh, C.W. Gardiner, Adv. Phys. 57, 363 (2008)

    Article  ADS  Google Scholar 

  39. L. Olivares-Quiroz, V. Romero-Rochin, J. Phys. B, At. Mol. Opt. Phys. 43, 205302 (2010)

    Article  ADS  Google Scholar 

  40. L. Reatto, J.P. Straley, Phys. Rev. 183, 321 (1969)

    Article  ADS  Google Scholar 

  41. L. Landau, J Phys-USSR 5, 71 (1941)

    Google Scholar 

  42. D. WuSheng, X. Mie, J. Math. Phys. 48, 123302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  43. L. Tongling, G. Su, C. Ou, B. Lin, Mod. Phys. Lett. B 24, 1727 (2010)

    Article  ADS  MATH  Google Scholar 

  44. N. Sandoval-Figueroa, V. Romero-Rochin, Phys. Rev. E 78, 061129 (2008)

    Article  ADS  Google Scholar 

  45. Y. Hao, S. Chen, Eur. Phys. J. D 2, 261 (2009)

    Article  ADS  Google Scholar 

  46. R.N. Bisset, P.B. Blakie, Phys. Rev. A 80, 045603 (2009)

    Article  ADS  Google Scholar 

  47. J. Oliva, Phys. Rev. B 38, 8811 (1988)

    Article  ADS  Google Scholar 

  48. J. Oliva, Phys. Rev. B 39, 4197 (1989)

    Article  ADS  Google Scholar 

  49. S. Lumb, S.K. Muthu, J. Phys. A, Math. Theor. 40, 8665 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. S. Guozhen, J. Chen, L. Chen, Physica A 368, 459 (2006)

    Article  ADS  Google Scholar 

  51. N.P. Proukakis, S.A. Morgan, S. Choi, K. Burnett, Phys. Rev. A 58, 2435 (1998)

    Article  ADS  Google Scholar 

  52. M. Bijlsma, H.T.C. Stoof, Phys. Rev. A 54, 5085 (1996)

    Article  ADS  Google Scholar 

  53. J.O. Andersen, U.A. Khawaja, H.T.C. Stoof, Phys. Rev. Lett. 88, 070407 (2002)

    Article  ADS  Google Scholar 

  54. U.A. Khawaja, J.O. Andersen, N.P. Proukakis, H.T.C. Stoof, Phys. Rev. Lett. 88, 070407 (2002)

    Article  Google Scholar 

  55. B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. Prokofev, B. Svistunov, M. Troyer, New J. Phys. 12, 043010 (2010)

    Article  ADS  Google Scholar 

  56. K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983)

    Article  ADS  Google Scholar 

  57. G. Baym, G. Grinstein, Phys. Rev. D 15, 2897 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Olivares-Quiroz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivares-Quiroz, L., Romero-Rochin, V. Isotherms, Order Parameter and Density Profiles for Weakly Interacting Bose Gases within Three Mean-Field Theories. J Low Temp Phys 164, 23–40 (2011). https://doi.org/10.1007/s10909-011-0366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-011-0366-9

Keywords

Navigation