Journal of Low Temperature Physics

, Volume 162, Issue 5–6, pp 702–709 | Cite as

A Macroscopic Approach to Determine Electron Mobilities in Low-Density Helium

Article

Abstract

We have developed a macroscopic approach to predict electron mobilities and cavity sizes in liquid and supercritical helium using the free-volume concept. We demonstrate very good agreement with experimental electron mobility data and significant improvement with respect to the commonly used ‘bubble’ model, especially for low hydrostatic pressures. The reason for this advancement is the use of heuristically developed thermodynamic state laws that account for the variations with density, temperature, and the isothermal compressibility of dense helium. The state equation uses the scattering length as input and parameters that are adjusted to experimental data. The conventional ‘bubble’ method is based on the surface tension which is not defined for all accessible thermodynamic states. We investigate the limit of very low densities, with Knudsen numbers larger than 1.5. Here, the mobilities predicted by our method coincide well with experimental data until the mobility diverges abruptly. This behaviour is interpreted as a cross-over from Stokes-flow to gas kinetics behaviour.

Keywords

Electron mobility in liquid and supercritical helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Levine, T.M. Sanders, Phys. Rev. 154, 138 (1967) CrossRefADSGoogle Scholar
  2. 2.
    C.C. Grimes, G. Adams, Phys. Rev. B 41, 6366 (1990) CrossRefADSGoogle Scholar
  3. 3.
    A. Golov, Z. Phys. B Cond. Mat. 98, 363 (1995) CrossRefADSGoogle Scholar
  4. 4.
    V. Grau, M. Barranco, R. Mayol, M. Pi, Phys. Rev. B 73, 064502 (2006) CrossRefADSGoogle Scholar
  5. 5.
    L. Lehtovaara, J. Eloranta, J. Low Temp. Phys. 148, 43 (2007) CrossRefADSGoogle Scholar
  6. 6.
    W.S. Dennis Jr., E. Durbin, W.A. Fitzsimmons, O. Heybey, G.K. Walters, Phys. Rev. Lett. 23, 1083 (1969) CrossRefADSGoogle Scholar
  7. 7.
    A.V. Benderskii, J. Eloranta, R. Zadoyan, V.A. Apkarian, J. Chem. Phys. 117, 1201 (2002) CrossRefADSGoogle Scholar
  8. 8.
    Z. Li, N. Bonifaci, F. Aitken, A. Denat, K. von Haeften, V. Atrazhev, V.A. Shakhathov, Eur. Phys. J. Appl. Phys. 52, 11 (2009) Google Scholar
  9. 9.
    Z. Li, N. Bonifaci, F. Aitken, A. Denat, K. von Haeften, V. Atrazhev, V.A. Shakhathov, IEEE Trans. Dielectr. Electr. Insul. 16, 742 (2009) CrossRefGoogle Scholar
  10. 10.
    K. von Haeften, T. Laarmann, H. Wabnitz, T. Möller, Phys. Rev. Lett. 88, 233401 (2002) CrossRefADSGoogle Scholar
  11. 11.
    A.P. Hickman, N.F. Lane, Phys. Rev. Lett. 26, 1216 (1971) CrossRefADSGoogle Scholar
  12. 12.
    F.J. Soley, W.A. Fitzsimmons, Phys. Rev. Lett. 32, 988 (1974) CrossRefADSGoogle Scholar
  13. 13.
    A.P. Hickman, W. Steets, N.F. Lane, Phys. Rev. B 12, 3705 (1975) CrossRefADSGoogle Scholar
  14. 14.
    H.J. Maris, J. Phys. Soc. Jpn. 77, 111008 (2008) CrossRefADSGoogle Scholar
  15. 15.
    K. Penanen, M. Fukuto, R.K. Heilmann, I.F. Silvera, P.S. Pershan, Phys. Rev. B 62, 9621 (2000) CrossRefADSGoogle Scholar
  16. 16.
    A.K. Doolittle, J. Appl. Phys. 22, 1471 (1951) CrossRefADSGoogle Scholar
  17. 17.
    T. Miyamoto, K. Shibayama, J. Appl. Phys. 44, 5372 (1973) CrossRefADSGoogle Scholar
  18. 18.
    J.O. Hirshfelder, C.F. Curtiss, R.B. Bird, Molecular Theory Gases and Liquids, 2nd printing, corrected, with notes (Wiley, New York, 1964) Google Scholar
  19. 19.
    A.F. Borghesani, Ions and Electrons in Liquid Helium (Oxford University Press, New York, 2007) CrossRefGoogle Scholar
  20. 20.
    L. Meyer, H.T. Davis, S.A. Rice, R.J. Donnelly, Phys. Rev. 126, 1927 (1962) CrossRefADSGoogle Scholar
  21. 21.
    J.A. Jahnke, M. Silver, J.P. Hernandez, Phys. Rev. B 12, 3420 (1975) CrossRefADSGoogle Scholar
  22. 22.
    F. Aitken, Z. Li, N. Bonifaci, A. Denat, K. von Haeften, Phys. Chem. Chem. Phys. (2010). doi:10.1039/C0CP00786B Google Scholar
  23. 23.
    M. Barranco, M. Guilleumas, M. Pi, D.M. Jezek, in Approaches to Quantum Liquids in Confined Geometries, ed. by E. Krotscheck, J. Navarro (World Scientific, Singapore, 2002), p. 319 CrossRefGoogle Scholar
  24. 24.
    J. Eloranta, V.A. Apkarian, J. Chem. Phys. 117, 10139 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • F. Aitken
    • 1
  • N. Bonifaci
    • 1
  • A. Denat
    • 1
  • K. von Haeften
    • 2
  1. 1.G2ELab-CNRSGrenobleFrance
  2. 2.Department of Physics & AstronomyUniversity of LeicesterLeicesterUK

Personalised recommendations