Skip to main content
Log in

Joule-Thomson Coefficients of Confined Ideal Quantum Gases

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

By using the pressure and entropy of a system obtained from the grand potential of ideal quantum gases confined in a long tube with a fixed transverse cross section of area and the fundamental relations of thermodynamics, expression for the heat capacity at given longitudinal pressure and area of cross section is derived, from which the linear expansion coefficient and the Joule-Thomson coefficient (JTC) of the system are obtained. Moreover, the effects of the finite size on the heat capacity, expansion coefficient and JTC of the system are discussed in detail. It is significant to find that the absolute values of the JTCs of confined ideal quantum gases increase with the decrease of the systemic size and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Boles, Y.A. Cengel, Thermodynamics, An Engineering Approach (McGraw-Hill, New York, 1994)

    Google Scholar 

  2. R. Balian, From Microphysics to Macrophysics: Methods and Applications of Statistical Physics, Vol. 1 (Springer, Heidelberg, 1991)

    Google Scholar 

  3. H.T. Davis, Statistical Mechanics of Phases, Interfaces, and Thin Films (Wiley-VCH, New York, 1996)

    Google Scholar 

  4. G.W. Castellan, Physical Chemistry, 3rd edn. (Addison-Wesley, New York, 1983)

    Google Scholar 

  5. A.W. Adamson, A Textbook of Physical Chemistry, 2nd edn. (Academic, New York, 1979)

    Google Scholar 

  6. M.K. Kamp, Physical Chemistry. A Step-by-Step Approach (Dekker, New York, 1979)

    Google Scholar 

  7. H. Saygin, A. Sisman, Appl. Energy 70, 49 (2001)

    Article  Google Scholar 

  8. Y. Pan, L. Chen, Low Temp. Spec. Gases 21, 19 (2003)

    Google Scholar 

  9. D.A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976)

    Google Scholar 

  10. A. Sisman, I. Muller, Phys. Lett. A 320, 360 (2004)

    Article  ADS  Google Scholar 

  11. T. Lin, B. Lin, G. Su, J. Chen, Int. J. Mod. Phys. B (to be published)

  12. T. Lin, G. Su, C. Ou, B. Lin, A. Le Méhauté, Q. Wang, J. Chen, Mod. Phys. Lett. B 24, 1727 (2010)

    Article  ADS  MATH  Google Scholar 

  13. G. Gutiérrez, J.M. Yáñez, Am. J. Phys. 65, 739 (1997)

    Article  ADS  Google Scholar 

  14. R.K. Pathria, Am. J. Phys. 66, 1080 (1998)

    Article  ADS  Google Scholar 

  15. W. Dai, M. Xie, Phys. Rev. E 70, 016103 (2004)

    Article  ADS  Google Scholar 

  16. W. Dai, M. Xie, Phys. Lett. A 311, 340 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  18. M. Abramowitz, C.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972)

    MATH  Google Scholar 

  19. A. Sisman, J. Phys. A, Math. Gen 37, 11353 (2004)

    Article  ADS  MATH  Google Scholar 

  20. M. Schoen, Physica A 207, 353 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Su, G. & Chen, J. Joule-Thomson Coefficients of Confined Ideal Quantum Gases. J Low Temp Phys 163, 34–42 (2011). https://doi.org/10.1007/s10909-010-0303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0303-3

Keywords

Navigation