Skip to main content
Log in

Cooperative Two-Quanta Phase Transitions in Quantum Optics and Superconductivity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The behavior of an electronic subsystem in strong interaction with phonon subsystem, or quantified electromagnetic field (QEF) is discussed. In this case the correlation effect between first and second order electron–phonon interaction (or atom–QEF interaction) takes place. It is shown that the temperature dependence of two-quanta exchange between Fermi sub-system and thermal reservoir gives a non-linear behavior of the order parameter in superconductivity and super-radiance, accompanied by an increase of the electron correlations with increasing temperature. The same effect is considered for two-quanta scattering processes, in which one quantum is absorbed and another is emitted. It is demonstrated, that the order parameter in such a system firstly increases with temperature achieving the maximal value. After that it decreases as in traditional phase transition effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  MATH  ADS  Google Scholar 

  2. A. DiRienzo, D. Rogovin et al., in Coherence in Spectroscopy and Modern Physics, ed. by T. Arecchi et al. (Plenum, New York, 1978), p. 231

    Google Scholar 

  3. K. Hepp, E.H. Lieb, Anns. Phys. 76, 360 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  4. V.I. Emelyanov, Yu.L. Klimontovich, Quantum Electron. 3, 848 (1976) (in Russian)

    Google Scholar 

  5. V.N. Popov, S.A. Fedotov, Sov. Phys. JETP 67, 535 (1988)

    Google Scholar 

  6. N.A. Enaki, Zh. Eksp. Teor. Fiz. 94(10), 135 (1988)

    Google Scholar 

  7. N.A. Enaki, Sov. Phys. JETP 67, 2033 (1988)

    Google Scholar 

  8. N.A. Enaki, V. Eremeev, New J. Phys. 4, 80.1–80.12 (2002)

    Article  Google Scholar 

  9. N.A. Enaki, O.B. Prepelitza, Izvestia Academii Nauk Rep. Moldova 3(9), 52 (1992)

    Google Scholar 

  10. N.A. Enaki, V. Eremeev, Phys. Lett. A 357, 104 (2006)

    Article  MATH  ADS  Google Scholar 

  11. N.A. Enaki, M.A. Macovei, Rus. Phys. JETP 88, 633 (1999)

    Article  ADS  Google Scholar 

  12. K. Ji, K. Nasu, Phys. Lett. 372A, 524 (2008)

    ADS  Google Scholar 

  13. Z. Bak, Czechoslov. J. Phys. 54, D461–D464 (2004) Part 2 Suppl. D

    Article  Google Scholar 

  14. N.N. Bogoliubov, N.N. Bogoliubov(j), Fiz. Elem. Ciastits At. Yadra, Dubna 11, 245 (1980)

    Google Scholar 

  15. N.N. Bogoliubov, N.N. Bogoliubov(j), Sov. J. Part. Nucl. 11, 93 (1980)

    Google Scholar 

  16. V.G. Levich, Yu.A. Vdovin, in The Course of Theoretical Physics, vol. 2 (Nauka, Moscow, 1962) (in Russian)

    Google Scholar 

  17. R. Marrus, R.W. Schmieder, Phys. Rev. A 5, 1160 (1972)

    Article  ADS  Google Scholar 

  18. G. Breit, E. Teller, Astrophys. J. 91, 215 (1940)

    Article  ADS  Google Scholar 

  19. M. Bruno, J.M. Raimond, S. Haroche, Phys. Rev. A 35, 3888 (1987)

    Article  Google Scholar 

  20. M. Bruno, J.M. Raimond, P. Goy, Phys. Rev. Lett. 59, 1987 (1898)

    Google Scholar 

  21. H. Haken, Quanten Feld Theorie des Festkörpers. Stuttgart (1973)

  22. W. Heitler, Quantum Theory of Radiation, 3rd edn. (London 1954), Sec. 8

  23. M. Abramovitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964)

    Google Scholar 

  24. C.K. Au, G. Feindberg, Phys. Rev. A 9, 1794 (1974)

    Article  ADS  Google Scholar 

  25. H.A. Bethe, Phys. Rev. 72, 339 (1947)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Enaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enaki, N. Cooperative Two-Quanta Phase Transitions in Quantum Optics and Superconductivity. J Low Temp Phys 160, 157–178 (2010). https://doi.org/10.1007/s10909-010-0185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0185-4

Keywords

Navigation