Skip to main content
Log in

The Characteristics of the Superconducting and Magnetic Phases in the Polycrystalline Samples of Ruthenocuprates of Nominal Compositions RuSr2GdCu2O8, Ru0.98Sr2GdCu2O8 and Ru0.5Sr2GdCu2.5O8−δ

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The temperature dependencies of the resistivity for the superconducting ruthenocuprates of nominal compositions RuSr2GdCu2O8, Ru0.98Sr2GdCu2O8 and Ru0.5Sr2GdCu2.5O8−δ were examined for the magnetic field dependent characteristics of the superconducting transitions. The effect of the insignificant diminishing of the Ru/Cu ratio in parent RuSr2GdCu2O8 was confirmed as relevant for the stabilisation of the superconducting phase. Noted differences in the compared characteristics are interpreted for possible inhomogeneous nucleation of the superconducting phase in the parent ruthenocuprate. The phase anisotropy in RuSr2GdCu2O8 and Ru0.98Sr2GdCu2O8, in presence of the compounds Ru magnetism, appears to be a cause of a significant softening of the H c2(T) phase line. An anomalous lowering of the magnetoresistivity was observed in the approx. 10 K range above the onset of the superconducting transition, which may suggest the presence of enhanced superconducting fluctuations in the samples.

The positive magnetic field shift of the temperatures, which limit the magnetoresistivity and the specific heat signatures of the magnetic ordered state of the Ru sublattice, suggests probing the influence of the ferromagnetic Ru interactions in an effective metallic-like conduction channel present in the samples.

Superconducting characteristics of the Ru0.5Sr2GdCu2.5O8−δ reveal a significant contribution of the Gd paramagnetic signal at low temperatures, interpreted for the presence of a significant anisotropy of the superconducting phase. It is concluded that the Ru–Cu substituted phases of ruthenocuprates may present an opportunity to investigate the effectively anisotropic superconducting phase despite its comparatively high T c in the compounds related to the 123-type cuprate superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Lorenz, Y.Y. Xue, C.W. Chu, in Studies of High-Temperature Superconductors, vol. 46, ed. by A.V. Narlikar (Nova Science, New York, 2004)

    Google Scholar 

  2. I. Felner, E. Galstyan, I. Nowik, Phys. Rev. B 71, 064510 (2005)

    Article  ADS  Google Scholar 

  3. A. Shengelaya, R. Khasanov, D.G. Eshchenko, I. Felner, U. Asaf, I.M. Savic, H. Keller, K.A. Müller, Phys. Rev. B 69, 024517 (2004)

    Article  ADS  Google Scholar 

  4. I. Felner, U. Asaf, S. Reich, Y. Tsabba, Physica C 311, 163 (1999)

    Article  ADS  Google Scholar 

  5. O.I. Lebedev, G. Van Tendeloo, J.P. Attfield, A.C. Mclaughlin, Phys. Rev. B 73, 224524 (2006)

    Article  ADS  Google Scholar 

  6. T. Nachtrab, D. Koelle, R. Kleiner, Ch. Bernhard, C.T. Lin, Phys. Rev. Lett. 92, 117001 (2004)

    Article  ADS  Google Scholar 

  7. H. Braun, L. Bauernfeind, O. Korf, T.P. Papageorgiou, in Ruthenate and Rutheno-Cuprate Materials Unconventional Superconductivity, Magnetism and Quantum Phase Transitions, ed. by C. Noce, A. Vecchione, M. Cuoco, A. Romano. LNP, vol. 603 (Springer, Berlin, 2002)

    Google Scholar 

  8. V.P.S. Awana, M. Karppinen, H. Yamauchi, in Studies of High-Temperature Superconductors, vol. 46, ed. by A.V. Narlikar (Nova Science, New York, 2004)

    Google Scholar 

  9. I. Felner, in Studies of High-Temperature Superconductors, vol. 46, ed. by A.V. Narlikar (Nova Science, New York, 2004)

    Google Scholar 

  10. T. Nachtrab, Ch. Bernhard, C.T. Lin, D. Koelle, R. Kleiner, C.R. Physique 7, 6 (2006)

    Article  Google Scholar 

  11. P.W. Klamut, Supercond. Sci. Technol. 21, 093001 (2008)

    Article  ADS  Google Scholar 

  12. E. Sader, A.T. Matveev, H.-U. Habermeier, Supercond. Sci. Technol. 19, L29 (2006)

    Article  ADS  Google Scholar 

  13. P.W. Klamut, B. Dabrowski, S. Koleśnik, M. Maxwell, J. Mais, Phys. Rev. B 63, 224512 (2001)

    Article  ADS  Google Scholar 

  14. P.W. Klamut, B. Dabrowski, S.M. Mini, M. Maxwell, J. Mais, I. Felner, U. Asaf, F. Ritter, A. Shengelaya, R. Khasanov, I.M. Savic, H. Keller, A. Wisniewski, R. Puzniak, I.M. Fita, C. Sulkowski, M. Matusiak et al., Physica C 387, 33 (2003)

    Article  ADS  Google Scholar 

  15. E. Casini, T.P. Papageorgiou, T. Herrmannsdörfer, J. Wosnitza, F.H. Braun, Physica C 460–462, 401 (2007)

    Article  Google Scholar 

  16. E. Casini, M. Kempf, J. Krämer, H.F. Braun, J. Phys., Condens. Matter 21, 254210 (2009)

    Article  ADS  Google Scholar 

  17. T.P. Papageorgiou, E. Casini, Y. Skourski, T. Herrmannsdörfer, J. Freudenberger, H.F. Braun, J. Wosnitza, Physica C 460–462, 390 (2007)

    Article  Google Scholar 

  18. P.W. Klamut, T. Plackowski, Supercond. Sci. Technol. 22, 025021 (2009)

    Article  ADS  Google Scholar 

  19. Ch. Bernhard, J.L. Tallon, E. Brücher, R.K. Kramer, Phys. Rev. B 61, R14960 (2000)

    Article  ADS  Google Scholar 

  20. M.M. Doria, Physica C 404, 145 (2004)

    Article  ADS  Google Scholar 

  21. M. Pozek, I. Kupcic, A. Dulcic, A. Hamzic, D. Paar, M. Basletic, E. Tafra, Phys. Rev. B 77, 214514 (2008)

    Article  ADS  Google Scholar 

  22. B. Rosenstein, B.Y. Shapiro, R. Prozorov, A. Shaulov, Y. Yeshurun, Phys.Rev. B 63, 134501 (2001)

    Article  ADS  Google Scholar 

  23. J.W. Lynn, B. Keimer, C. Ulrich, Ch. Bernhard, J.L. Tallon, Phys. Rev. B 61, R14964 (2000)

    Article  ADS  Google Scholar 

  24. J.D. Jorgensen, O. Chmaissem, H. Shaked, S. Short, P.W. Klamut, B. Dabrowski, J.L. Tallon, Phys. Rev. B 63, 54440 (2001)

    Article  ADS  Google Scholar 

  25. Z.H. Han, J.I. Budnick, W.A. Hines, P.W. Klamut, M. Maxwell, B. Dabrowski, J. Magn. Magn. Mater. 299, 338 (2006)

    Article  ADS  Google Scholar 

  26. P.W. Klamut, B. Dabrowski, S. Mini, S. Kolesnik, M. Maxwell, J. Mais, A. Shengelaya, R. Khasanov, I. Savic, H. Keller, C. Sulkowski, D. Wlosewicz, M. Matusiak, A. Wisniewski, R. Puzniak, I. Fita, in Ruthenate and Rutheno-Cuprate Materials Unconventional Superconductivity, Magnetism and Quantum Phase Transitions, ed. by C. Noce, A. Vecchione, M. Cuoco, A. Romano. LNP, vol. 603 (Springer, Berlin, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr W. Klamut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klamut, P.W., Plackowski, T. & Matusiak, M. The Characteristics of the Superconducting and Magnetic Phases in the Polycrystalline Samples of Ruthenocuprates of Nominal Compositions RuSr2GdCu2O8, Ru0.98Sr2GdCu2O8 and Ru0.5Sr2GdCu2.5O8−δ . J Low Temp Phys 159, 576–591 (2010). https://doi.org/10.1007/s10909-010-0167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0167-6

Keywords

Navigation