Dissipation in a Gold Nanomechanical Resonator at Low Temperatures

Abstract

We present results from a study of the dissipation in nanomechanical gold resonators. We fabricated a nanomechanical resonator consisting of a gold wire of width 300 nm, thickness 80 nm and length 7.5 μm by etching away the underlying GaAs substrate. At low temperatures the resonator had a fundamental frequency of about 7.95 MHz, in part due to tension arising from differential thermal contraction between the gold beam and the underlying semiconductor substrate. The dissipation in the resonator was measured using the magnetomotive method over the temperature range 1 K to 10 mK. We find that the Q-factor of the resonator increases by more than a factor of four between 600 mK and 10 mK. The dissipation follows a weak power law dependence on temperature, T 0.5, from approximately 30 mK to 600 mK.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Cleland, Foundations of Nanomechanics (Springer, Berlin, 2003)

    Google Scholar 

  2. 2.

    K.L. Ekinci, M. Roukes, Rev. Sci. Instrum. 76, 061101 (2005)

    Article  ADS  Google Scholar 

  3. 3.

    M. Blencowe, Phys. Rep. 395, 159 (2004)

    Article  ADS  Google Scholar 

  4. 4.

    M. Schlosshauer, A.P. Hines, G.J. Milburn, Phys. Rev. A 77, 022111 (2008)

    Article  ADS  Google Scholar 

  5. 5.

    A.D. Armour, M.P. Blencowe, New J. Phys. 10, 095004 (2008)

    Article  ADS  Google Scholar 

  6. 6.

    K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, IEEE/ASME J. Microelectromech. Syst. 9, 117 (2000)

    Article  Google Scholar 

  7. 7.

    X. Liu, J.F. Vignola, H.J. Simpson, B.R. Lemon, B.H. Houston, D.M. Photiadis, J. Appl. Phys. 97, 023524 (2005)

    Article  ADS  Google Scholar 

  8. 8.

    B.M. Zwickl, W.E. Shanks, A.M. Jayich, C. Yang, A.C. Bleszynski Jayich, J.D. Thompson, J.G.E. Harris, Appl. Phys. Lett. 92, 103125 (2008)

    Article  ADS  Google Scholar 

  9. 9.

    S.S. Verbridge, D. Finkelstein-Shapiro, H.G. Craighead, J.M. Parpia, Nano Lett. 7, 1728 (2007)

    Article  ADS  Google Scholar 

  10. 10.

    D.S. Greywall, B. Yurke, P.A. Busch, S.C. Arney, Europhys. Lett. 34, 37 (1996)

    Article  ADS  Google Scholar 

  11. 11.

    G. Zolfagharkani, A. Gaidarzhy, S.-B. Shim, R.L. Badzey, P. Mohanty, Phys. Rev. B 72, 224101 (2005)

    Article  ADS  Google Scholar 

  12. 12.

    P. Mohanty, D.A. Harrington, K.L. Ekinci, Y.T. Yang, M.J. Murphy, M.L. Roukes, Phys. Rev. B 66, 085416 (2002)

    Article  ADS  Google Scholar 

  13. 13.

    M. Imboden, P. Mohanty, Phys. Rev. B 79, 125424 (2009)

    Article  ADS  Google Scholar 

  14. 14.

    C.A. Regal, J.D. Teufel, K.W. Lehnert, Nat. Phys. 4, 555 (2008)

    Article  Google Scholar 

  15. 15.

    J.D. Teufel, C.A. Regal, K.W. Lehnert, New J. Phys. 10, 095002 (2008)

    Article  ADS  Google Scholar 

  16. 16.

    T.F. Li, Yu.A. Pashkin, O. Astafiev, Y. Nakamura, J.S. Tsai, H. Im, Appl. Phys. Lett. 92, 043112 (2008)

    Article  ADS  Google Scholar 

  17. 17.

    L.D. Jackel, R.E. Howard, E.L. Hu, D.M. Tennant, P. Grabbe, Appl. Phys. Lett. 39, 268 (1981)

    Article  ADS  Google Scholar 

  18. 18.

    A. Cleland, M.L. Roukes, Sens. Actuators A 72, 256 (1999)

    Article  Google Scholar 

  19. 19.

    H.W.Ch. Postma, I. Kozinsky, A. Husain, M.L. Roukes, Appl. Phys. Lett. 86, 223105 (2005)

    Article  ADS  Google Scholar 

  20. 20.

    F.C. Nix, D. MacNair, Phys. Rev. 60, 597 (1941)

    Article  ADS  Google Scholar 

  21. 21.

    J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)

    Article  ADS  Google Scholar 

  22. 22.

    A.B. Hutchinson, P.A. Truitt, K.C. Schwab, L. Sekaric, J.M. Parpia, H.G. Craighead, J.E. Butler, Appl. Phys. Lett. 84, 972 (2004)

    Article  ADS  Google Scholar 

  23. 23.

    R. Lifshitz, M.L. Roukes, Phys. Rev. B 61, 5600 (2000)

    Article  ADS  Google Scholar 

  24. 24.

    M.C. Cross, R. Lifshitz, Phys. Rev. B 64, 085324 (2001)

    Article  ADS  Google Scholar 

  25. 25.

    D.M. Photiadis, J.A. Judge, Appl. Phys. Lett. 85, 482 (2004)

    Article  ADS  Google Scholar 

  26. 26.

    I. Wilson-Rae, Phys. Rev. B 77, 245418 (2008)

    Article  ADS  Google Scholar 

  27. 27.

    P. Esquinazi, R. König, in Tunneling Systems in Amorphous and Crystalline Solids, ed. by P. Esquinazi (Springer, Berlin, 1998)

    Google Scholar 

  28. 28.

    W.A. Phillips, Rep. Prog. Phys. 50, 1657 (1987)

    Article  ADS  Google Scholar 

  29. 29.

    K. Chun, N.O. Birge, Phys. Rev. B 54, 4629 (1996)

    Article  ADS  Google Scholar 

  30. 30.

    P. Esquinazi, R. König, F. Pobell, Z. Phys., B Condens. Matter. 87, 305 (1992)

    Article  ADS  Google Scholar 

  31. 31.

    C. Seoánez, F. Guniea, A.H. Castro Neto, Phys. Rev. B 77, 125107 (2008)

    Article  ADS  Google Scholar 

  32. 32.

    A.D. Fefferman, R.O. Pohl, A.T. Zehnder, J.M. Parpia, Phys. Rev. Lett. 100, 195501 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Venkatesan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Venkatesan, A., Lulla, K.J., Patton, M.J. et al. Dissipation in a Gold Nanomechanical Resonator at Low Temperatures. J Low Temp Phys 158, 685 (2010). https://doi.org/10.1007/s10909-009-9951-6

Download citation

Keywords

  • Nanomechanical resonators
  • Dissipation
  • Magnetomotive

PACS

  • 85.85.+j
  • 62.25.-g
  • 65.40.De