Advertisement

Dissipation in a Gold Nanomechanical Resonator at Low Temperatures

  • A. Venkatesan
  • K. J. Lulla
  • M. J. Patton
  • A. D. Armour
  • C. J. Mellor
  • J. R. Owers-Bradley
Article

Abstract

We present results from a study of the dissipation in nanomechanical gold resonators. We fabricated a nanomechanical resonator consisting of a gold wire of width 300 nm, thickness 80 nm and length 7.5 μm by etching away the underlying GaAs substrate. At low temperatures the resonator had a fundamental frequency of about 7.95 MHz, in part due to tension arising from differential thermal contraction between the gold beam and the underlying semiconductor substrate. The dissipation in the resonator was measured using the magnetomotive method over the temperature range 1 K to 10 mK. We find that the Q-factor of the resonator increases by more than a factor of four between 600 mK and 10 mK. The dissipation follows a weak power law dependence on temperature, T 0.5, from approximately 30 mK to 600 mK.

Keywords

Nanomechanical resonators Dissipation Magnetomotive 

PACS

85.85.+j 62.25.-g 65.40.De 

References

  1. 1.
    A. Cleland, Foundations of Nanomechanics (Springer, Berlin, 2003) Google Scholar
  2. 2.
    K.L. Ekinci, M. Roukes, Rev. Sci. Instrum. 76, 061101 (2005) CrossRefADSGoogle Scholar
  3. 3.
    M. Blencowe, Phys. Rep. 395, 159 (2004) CrossRefADSGoogle Scholar
  4. 4.
    M. Schlosshauer, A.P. Hines, G.J. Milburn, Phys. Rev. A 77, 022111 (2008) CrossRefADSGoogle Scholar
  5. 5.
    A.D. Armour, M.P. Blencowe, New J. Phys. 10, 095004 (2008) CrossRefADSGoogle Scholar
  6. 6.
    K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, IEEE/ASME J. Microelectromech. Syst. 9, 117 (2000) CrossRefGoogle Scholar
  7. 7.
    X. Liu, J.F. Vignola, H.J. Simpson, B.R. Lemon, B.H. Houston, D.M. Photiadis, J. Appl. Phys. 97, 023524 (2005) CrossRefADSGoogle Scholar
  8. 8.
    B.M. Zwickl, W.E. Shanks, A.M. Jayich, C. Yang, A.C. Bleszynski Jayich, J.D. Thompson, J.G.E. Harris, Appl. Phys. Lett. 92, 103125 (2008) CrossRefADSGoogle Scholar
  9. 9.
    S.S. Verbridge, D. Finkelstein-Shapiro, H.G. Craighead, J.M. Parpia, Nano Lett. 7, 1728 (2007) CrossRefADSGoogle Scholar
  10. 10.
    D.S. Greywall, B. Yurke, P.A. Busch, S.C. Arney, Europhys. Lett. 34, 37 (1996) CrossRefADSGoogle Scholar
  11. 11.
    G. Zolfagharkani, A. Gaidarzhy, S.-B. Shim, R.L. Badzey, P. Mohanty, Phys. Rev. B 72, 224101 (2005) CrossRefADSGoogle Scholar
  12. 12.
    P. Mohanty, D.A. Harrington, K.L. Ekinci, Y.T. Yang, M.J. Murphy, M.L. Roukes, Phys. Rev. B 66, 085416 (2002) CrossRefADSGoogle Scholar
  13. 13.
    M. Imboden, P. Mohanty, Phys. Rev. B 79, 125424 (2009) CrossRefADSGoogle Scholar
  14. 14.
    C.A. Regal, J.D. Teufel, K.W. Lehnert, Nat. Phys. 4, 555 (2008) CrossRefGoogle Scholar
  15. 15.
    J.D. Teufel, C.A. Regal, K.W. Lehnert, New J. Phys. 10, 095002 (2008) CrossRefADSGoogle Scholar
  16. 16.
    T.F. Li, Yu.A. Pashkin, O. Astafiev, Y. Nakamura, J.S. Tsai, H. Im, Appl. Phys. Lett. 92, 043112 (2008) CrossRefADSGoogle Scholar
  17. 17.
    L.D. Jackel, R.E. Howard, E.L. Hu, D.M. Tennant, P. Grabbe, Appl. Phys. Lett. 39, 268 (1981) CrossRefADSGoogle Scholar
  18. 18.
    A. Cleland, M.L. Roukes, Sens. Actuators A 72, 256 (1999) CrossRefGoogle Scholar
  19. 19.
    H.W.Ch. Postma, I. Kozinsky, A. Husain, M.L. Roukes, Appl. Phys. Lett. 86, 223105 (2005) CrossRefADSGoogle Scholar
  20. 20.
    F.C. Nix, D. MacNair, Phys. Rev. 60, 597 (1941) CrossRefADSGoogle Scholar
  21. 21.
    J.S. Blakemore, J. Appl. Phys. 53, R123 (1982) CrossRefADSGoogle Scholar
  22. 22.
    A.B. Hutchinson, P.A. Truitt, K.C. Schwab, L. Sekaric, J.M. Parpia, H.G. Craighead, J.E. Butler, Appl. Phys. Lett. 84, 972 (2004) CrossRefADSGoogle Scholar
  23. 23.
    R. Lifshitz, M.L. Roukes, Phys. Rev. B 61, 5600 (2000) CrossRefADSGoogle Scholar
  24. 24.
    M.C. Cross, R. Lifshitz, Phys. Rev. B 64, 085324 (2001) CrossRefADSGoogle Scholar
  25. 25.
    D.M. Photiadis, J.A. Judge, Appl. Phys. Lett. 85, 482 (2004) CrossRefADSGoogle Scholar
  26. 26.
    I. Wilson-Rae, Phys. Rev. B 77, 245418 (2008) CrossRefADSGoogle Scholar
  27. 27.
    P. Esquinazi, R. König, in Tunneling Systems in Amorphous and Crystalline Solids, ed. by P. Esquinazi (Springer, Berlin, 1998) Google Scholar
  28. 28.
    W.A. Phillips, Rep. Prog. Phys. 50, 1657 (1987) CrossRefADSGoogle Scholar
  29. 29.
    K. Chun, N.O. Birge, Phys. Rev. B 54, 4629 (1996) CrossRefADSGoogle Scholar
  30. 30.
    P. Esquinazi, R. König, F. Pobell, Z. Phys., B Condens. Matter. 87, 305 (1992) CrossRefADSGoogle Scholar
  31. 31.
    C. Seoánez, F. Guniea, A.H. Castro Neto, Phys. Rev. B 77, 125107 (2008) CrossRefADSGoogle Scholar
  32. 32.
    A.D. Fefferman, R.O. Pohl, A.T. Zehnder, J.M. Parpia, Phys. Rev. Lett. 100, 195501 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Venkatesan
    • 1
  • K. J. Lulla
    • 1
  • M. J. Patton
    • 1
  • A. D. Armour
    • 1
  • C. J. Mellor
    • 1
  • J. R. Owers-Bradley
    • 1
  1. 1.School of Physics and AstronomyUniversity of NottinghamNottinghamUK

Personalised recommendations